Preliminary Results on Charm Decays at BESIII

L.L. Jiang [For BESIII Collaboration] Institute of High Energy Physics, Beijing, China

Workshop of Charm at Threshold (21–23 Oct. 2011, IHEP, Beijing, China)

OUTLINE

- Introduction of BEPCII and BESIII
- The Major Physics Topics
- Ongoing analysis
- Summary

Satellite view of BEPCII / BESIII

LINAC

BESIII- A brand-new detector

South

 →
 Magnet yoke

 →
 RPC (9/8 layers Barrel/Endcaps)

 ↓
 SC magnet, 1 Tesla

 ↓
 TOF (scintillators), 90 ps

 ↓
 Be beam pipe

 →
 MDC, 120µm

 →
 Csl(TI) calorimeter, 2.5% at 1 GeV

The BEPCII is a double-ring machine with designed peak luminosity of 1×10^{33} cm⁻²s⁻¹ at $\sqrt{s} = 3.78$ GeV. 2004: start construction 2008: test run 2009-now: BEPCII/BESIII data taking Achieved Luminosity: 0.65×10^{33} cm⁻²s⁻¹

Detector parameters comparison

Sub-system	BESIII	BESII
MDC	$\sigma_{xy} = 130 \mu \mathrm{m}$	250 µ m
	$\Delta P/P=0.5\%$ @ 1GeV SC magnet	<u>2.4%@1GeV</u>
	$\sigma_{dE/dx} = (6-7) \%$	8.5%
EM Calorimeter	$\Delta E/E = 2.5\%$ @ 1 GeV	<u>20%@1GeV</u>
	$\sigma_z = 0.6 \text{cm} @ 1 \text{ GeV}$	3cm @ 1 GeV
TOF detector	$\sigma_{T}(ps)=100 ps$ barrel	180 ps barrel
	110 ps endcap	350 ps endcap
μ counters	9 layers	3 layers
Magnet	1.0 tesla	0.4 tesla

Data samples at BESIII at present

More data above the DD thresthold will be collected at BESIII in the future! Good opportunity for us!

The Major Physics Topics [1]

Purpose: Overcome the non-perturbative QCD roadblock, test pQCD calculations and probe for new Physics beyond SM

Semileptonic decays of D and D_s

 $|\mathbf{V}_{\rm cs}|$, $|\mathbf{V}_{\rm cd}|$ and form factor

• Purely leptonic decays of D⁺ and D_s⁺

decay constants f_D & f_{Ds}

Absolute hadronic branching fractions To normalize B and Z physics

Which can be test QCD techniques in charm sector and apply to B sector. More to Improve determinations of $|V_{ub}|$, $|V_{cb}|$, $|V_{td}|$ and $|V_{ts}|$.

The Major Physics Topics [2]

- **Probe for New Physics**
 - > D⁰D⁰ mixing
 - > Searching for CP Violation decays of D
 - **>** Searching for Rare Decays of D and D_s mesons

Precision measurements on charm decays can be served as precisely test the Standard Model.

Advantage of Open Charm at Threshold

At the center-of-mass energies near the DD and $D_s^+D_s^-$ production thresholds, the D⁰, D⁺ and D_s⁺ mesons are produced in pair. We can take the advantage of the fully reconstructed one of the open-charm pair to study the other anti-open-charm decays

Singly tagged D events

Singly tagged D_s events

BESIII Data @ 4.01 GeV

Purely-leptonic decays

Lattice QCD predicts f_D and f_{Ds} . More precisely measured f_D and f_{Ds} can be used to calibrate the LQCD calculations.

The decay constant \mathbf{f}_{D+} is related to the decay rate by:

$$\Gamma(D^+ \to l^+ \upsilon_l) = \frac{G_F^2 f_{D^+}^2}{8\pi} |V_{cd}|^2 m_l^2 m_{D^+} (1 - \frac{m_l^2}{m_{D^+}^2})^2$$

Ongoing analysis of the purely leptonic decays:

 $D^{+} \rightarrow \mu^{+} \nu_{\mu}, \tau^{+} \nu_{\tau}, e^{+} \nu_{e}$ $D_{s}^{+} \rightarrow \mu^{+} \nu_{\mu}, \tau^{+} \nu_{\tau}$

Purely-leptonic decays

Candidate events for $D^+ \rightarrow \mu^+ \nu_{\mu}$

If with ~2.9fb⁻¹ ψ (3770) data at BESIII:

$$\frac{\Delta Br}{Br} = 5.5\%$$
BESIII
Physics
book

Insert the quantities:

$$\frac{\Delta \tau_D}{\tau_D} = 0.7\% \qquad \frac{\Delta |V_{cd}|}{|V_{cd}|} = 0.4\% \quad [PDG10]$$

$$\implies \Delta f_{D+}/f_{D+} \cong 2.8\% \text{ [stat]}$$

$$\frac{\Delta f_{D^*}}{f_{D^*}} = \sqrt{\left(\frac{\Delta B}{2B}\right)^2 + \left(\frac{\Delta \tau_D}{2\tau_D}\right)^2 + \left(\frac{\Delta V_{cd}}{V_{cd}}\right)^2}$$

Purely-leptonic	decays	Data taken at 3.773 GeV 2000 2000 1000 500
EXP or Theory	f _{D+} (MeV)	MARKI DELCO MARKII MARKIII BESII CLEOC BESIII
BESIII expectation [2.9 fb ⁻¹]	~ 2.8% (stat.) 🔇	
CLEO-c (818 pb ⁻¹)	206 \pm 9 [4.1% sta	
Lattice[1]	208±4	
Lattice[2]	217 ± 10	
PQL	197±9	With 2.9 fb ⁻¹ ψ(3770)
QL(QCDSF)	206±23	data collected at BESIII
QS(Taiwan)	235 ± 16	till now. the relative
QL(UKQCD)	210±20	uncertainty of fD
QL	211±18	could reduced to
QCD Sum Rules[1]	177±21	
QCD Sum Rules[2]	203±20	2.8% by fully Monte
Field Correlators	210 ± 10	Carlo simulation!
Light Front	206	

Semi-leptonic decays

Extract out the form factor, which in turn be used to calibrate LQCD calculations

• Extract the $|V_{cs}|$ and $|V_{cd}|$. Any significant inconsistency between the measured values and the ones obtained from the CKM fit could provide a valuable indication of the NP beyond the SM in the first two quark generation

С

Ongoing analysis of the semi-leptonic decays:

D⁰→K⁻e⁺ν_e, π⁻e⁺ν_e D⁺→ωe⁺ν_e, φe⁺ν_e D⁺→π⁰e⁺ν_e, ηe⁺ν_e

Semi-leptonic decays

Candidate events for $D^0 \rightarrow K^-e^+\nu_e$, $\pi^-e^+\nu_e$

The accuracy levels for measurements of Br[D⁰ \rightarrow K⁻e⁺v_e] and Br[D⁰ \rightarrow \pi⁻e⁺v_e] are , respectively, ~0.8% and ~1.9% with 2.9fb⁻¹ ψ (3770) data at BESIII.

Semi-leptonic decays

For the transition to pseudoscalar meson, the decay rates Γ ralates to the CKM matrix elements and the form factors by:

$$\Gamma(D^{0} \to K^{-}e^{+}v_{e}) = 1.53 \times |V_{cs}|^{2} \times |f_{+}^{K}(0)|^{2} \times 10^{11} s^{-1}$$

$$\Gamma(D^{0} \to \pi^{-}e^{+}v_{e}) = 3.01 \times |V_{cs}|^{2} \times |f_{+}^{\pi}(0)|^{2} \times 10^{11} s^{-1}$$

• $f^{K}_{1}(0)$ and $f^{\pi}_{1}(0)$ \bullet |V_{cs}| and |V_{cd}| $\frac{\Delta |f_{+}^{K(\pi)}(0)|}{|f_{+}^{K(\pi)}(0)|} = \sqrt{\left(\frac{\Delta B}{2B}\right)^{2} + \left(\frac{\Delta \tau_{D}}{2\tau_{D}}\right)^{2} + \left(\frac{\Delta V_{es(ed)}}{V_{es(ed)}}\right)^{2}} \qquad \qquad \frac{\Delta |\mathbf{V}_{eq}|}{|\mathbf{V}_{eq}|} = \sqrt{\left(\frac{\Delta B}{2B}\right)^{2} + \left(\frac{\Delta \tau_{D}}{2\tau_{D}}\right)^{2} + \left(\frac{\Delta f}{f}\right)^{2}}$ Δ Br/Br = 0.8%, 1.9%, with 2.9fb⁻¹ ψ (3770) data. $\Delta \tau_{\rm D} / \tau_{\rm D} = 0.4\%$, [PDG10] ∆f/f = 2.5% [HPQCD] $\sum_{i=1}^{K} \frac{\Delta |V_{cs}| / |V_{cs}| = 0.02\%, \Delta |V_{cd}| / |V_{cd}| = 0.3\%, [PDG10 CKMfitter] }{\frac{\Delta |f_{+}^{K}(0)|}{|f_{+}^{K}(0)|} = 0.4\%, \frac{\Delta |f_{+}^{\pi}(0)|}{|f_{+}^{\pi}(0)|} = 1.0\%, \frac{\Delta |V_{cs}|}{|V_{cs}|} = 2.5\%, \frac{\Delta |V_{cd}|}{|V_{cd}|} = 2.7\%,$ PDG10: $\Delta V_{cc}/V_{cc} \sim 3.5\%$ $\Delta V_{cd}/V_{cd} \sim 4.8\%$

Absolute branching fraction measurements

Single tag events:

Using the double-tag analysis

Ψ(3770)

recoil

$$N_{s}(i) = 2N_{D\overline{D}}Br(i)\varepsilon(i) - \sum_{j=i}^{N} (2N_{D\overline{D}}\varepsilon(i)\varepsilon(i,j)Br(i)Br(j)) \qquad \mathsf{D}^{-} \mathsf{tag} \mathsf{tag}^{\pi} \mathsf$$

e+

double tag events:

$$N_d(i, j) = N_{D\overline{D}}Br(i)Br(j)\varepsilon(i, j)$$

$$\chi^{2} = \sum_{i=1}^{N} \left(\frac{N_{s}(i) - N_{s}^{\exp}(i)}{\sigma_{N_{s}(i)}} \right)^{2} + \sum_{i=1, j=i}^{N, N} \left(\frac{N_{d}(i, j) - N_{d}^{\exp}(i, j)}{\sigma_{N_{d}(i, j)}} \right)^{2}$$

• Normalize the branching fractions for B and Z decays.

 Affect determinations of the CKM matrx elements related to B semileptonic decays

V+

method

<u>e</u>-

Measurements of the cross sections for DD production

By analyzing open-charm data taken at BESIII, we can precisely measure the the cross sections for D meson pair production.

- Ongoing analysis :
 - Cross sections for D⁰D⁰, D⁺D⁻ and DD @ 3.773 GeV
 - Cross sections for charm pairs @ 4.01 GeV
 - Cross sections for D⁰D⁰, D⁺D⁻ and DD in 3.73-3.89 GeV region

Measurements of the cross sections for DD production

Why we are so interested in the cross sections—

- Sensitive to the strong interaction dynamics for the DD production and decays.
- Sensitive to some possible new structure(s) existing around the DD thresthold region.

The measured cross sections for D⁺D⁻, D⁰D⁰ and DD production in the ψ (3770) resonance region may help us to understand the "non-DD" decay of the traditional ψ (3770).

Measurements of the cross sections for DD production

Unfortunately, due to statistical limit, there measurements can not give definite conclusion about the production dynamics or whether there is a new structure around 3.770 GeV.

Now at BESIII, we have ~76pb⁻¹ $\psi(3770)$ scan data. By fully Monte Carlo simulation, the relative statistical uncertainty in the measured DD cross section can be reduced to be ~3%. While the uncertainty in the measurements at the BESII is ~8%.

Non-DD Branching Fraction of ψ (3770)

With ~60pb⁻¹ data collected from 3.65 to 3.875 GeV with the BESIII at the BEPC-II, we can measure the non-DD branching fraction of $\psi(3770)$ decays at an obsolute precison of ~3%(from cross section scans).

Non-DD Branching Fraction of ψ (3770)

The large open-charm data allows us to searching for the exlusive non-DD final states of the heavy charmonium states decay above the DD thresthold.

 A method to search for the new structure(s) in the open charm energy region
 To undersand the nature of the heavy cc states above the DD threshold well.

Ongoing analysis :

- Measurement of the Br[ψ (3770) \rightarrow non-DD]
- Searching for the non-DD final states of ψ (3770) decays
 - ▶ VP [ρπ, ρ⁰π⁰, ρ⁺π⁻, ρη, φη, K*K.....]
 - LH | multi_body
 - ► BB

22

Other Analysis at BESIII

- Dalitz plot analysis (D⁰->K⁻π⁺π⁰, D⁺->K⁰_sπ⁺π⁰, D⁰->K⁻π⁺η, D⁺->K⁺K⁻π⁺)
 - Study the K π system, searching for the low mass scalar resonance κ
 - Develop the Dalitz plot analysis software for Charm physics at BESIII
- Searching for CP violation through T-violation in modes: $D^+ \rightarrow K_s^0 K^+ \pi^+ \pi^-$ and $D^+ \rightarrow K^+ K^- \pi^+ \pi^0$.
- Measurement of the line shape for e⁺e⁻→inclusive hadrons production in the energy region from 3.64 to 3.89 GeV.

•••••

Summary

• High luminosity of BEPCII and the good performance of BESIII give us better chance to study the charm decays.

Rich results are coming out soon

- Challenge SM with precisely measurements on decay constants f_{D+} & f_{Ds}
- Check the LQCD with precisly measurements on form factors and CKM matrix.
- Precise measurement on absolute branching fractions.
- Precise measurement on the line shapes of the cross sections for $e^+e^- \rightarrow D^+D^-$, D^0D^0 and DD.
- Measurement of Br[$\psi(3770) \rightarrow$ non-DD] with lower statistical error.
- More works about the study of the non-DD decays of $\psi(3770)$.
- Dalitz plot analysis
- Searching for CP or T Violation in D-meson decays

Thank you!