Search for a dark photon using initial state radiation at BESIII

Benedikt Kloss for the BESIII Collaboration

Institute of Nuclear Physics – Mainz University

0

Twelfth Conference on the Intersections of Particle and Nuclear Physics

May 2015, Vail, Colorado

Goal of the analysis

A new U(1) gauge boson γ ' ("dark photon") might be the connection between the standard model and a dark sector:

Goal of the analysis

Existing exclusion limits on the dark photon (γ) mass and mixing parameter (ϵ):

The **ESII** experiment

BESIII Collaboration

Political Mep of the World, June 1999

closed on property in teached spectrum and

Europe (13)

Univ. of Hawaii Carnegie Mellon Univ. Univ. of Minnesota Univ. of Rochester Univ. of Indiana

US (5)

BESI

ILAND FRANKLES

Germany: Univ. of Bochum, Univ. of Giessen, GSI Univ. of Johannes Gutenberg Helmholtz Ins. In Mainz Russia: JINR Dubna; BINP Novosibirsk Italy: Univ. of Torino, Univ. of Ferrara, Frascati Lab Netherland : KVI/Univ. of Groningen Sweden: Uppsala Univ. Turkey: Turkey Accelerator Center

Pakistan (2)

Univ. of Punjab COMSAT CIIT

RAIII

~400 members 53 institutions from 11 countries

IHEP, Beijing

China(3/1)

 HEP, CCAST, GUCAS, Shandong Univ., Univ. of Sci. and Tech. of China Zhejiang Univ., Huangshan Coll.
 Huazhong Normal Univ., Wuhan Univ.
 Zhengzhou Univ., Henan Normal Univ.
 Peking Univ., Tsinghua Univ.,
 Peking Univ., Tsinghua Univ.,
 Shanxi Univ., Sichuan Univ., Nankai Univ.
 Shanxi Univ., Sichuan Univ., Univ. of South China Hunan Univ., Liaoning Univ.
 Nanjing Univ., Nanjing Normal Univ.
 Guangxi Normal Univ., Guangxi Univ.
 Suzhou Univ., Hangzhou Normal Univ.
 Lanzhou Univ., Henan Sci. and Tech. Univ.

Korea (1)

Seoul Nat. Univ.

Japan (1)

Tokyo Univ.

5

BEPCII Collider:

- located in Beijing, China
- symmetric e+e⁻ collider
- 2 GeV < E_{CMS} < 4.6 GeV data taken at $\sqrt{s} = 3.77 \ GeV$: 2.9 fb⁻¹

BESIII Detector

Initial State Radiation

Initial state radiation

Initial State Radiation

Two different analysis types:

- tagged: photon is detected in the Electromagnetic Calorimeter
- untagged: photon leaves the detector (most probable case)

Initial State Radiation

Two different analysis types:

- tagged: photon is detected in the Electromagnetic Calorimeter
- untagged: photon leaves the detector (most probable case)

Analysis idea

Idea: Search for the ISR processes

$$e^+e^- \rightarrow \gamma_{ISR}\gamma' \rightarrow \gamma_{ISR}\mu^+\mu^-$$

and

$$e^+e^- \rightarrow \gamma_{ISR}\gamma' \rightarrow \gamma_{ISR}e^+e^-$$

Use **untagged** ISR events and 2.9 fb⁻¹ data, taken at 3.77 GeV.

at

Analysis idea

Idea: Search for the ISR processes

$$e^+e^- \rightarrow \gamma_{ISR}\gamma' \rightarrow \gamma_{ISR}\mu^+\mu^-$$

and

$$e^+e^- \rightarrow \gamma_{ISR}\gamma' \rightarrow \gamma_{ISR}e^+e^-$$

Irreducible background:

$$e^{+}e^{-} \rightarrow \gamma_{ISR}\gamma^{*} \rightarrow \gamma_{ISR}\mu^{+}\mu^{-}$$
QED process,
same signature in
$$e^{+}e^{-} \rightarrow \gamma_{ISR}\gamma^{*} \rightarrow \gamma_{ISR}e^{+}e^{-}$$
detector!

Dark photon signal would appear as **peak** on the QED background. \Rightarrow **Peak search!**

Event selection

Event selection:
$$e^+e^- \rightarrow \mu^+\mu^-\gamma_{ISR}$$
 and $e^+e^- \rightarrow e^+e^-\gamma_{ISR}$

distance to interaction point	R _{xy} < 1.0 cm R _z < 10.0 cm
acceptance of charged tracks	0.4 rad < θ < π – 0.4 rad
to supress background	PID to select μ or e
# charged tracks	= 2
total charge	= 0
# photons	= 0 (untagged analysis)
missing photon angle	< 0.1 rad or > π – 0.1 rad
1C kinematic fit	$\chi^{2}_{1C} < 20$

Data-MC comparison: μ⁺μ⁻ case

Data-MC efficiency corrections applied on MC.

See talk on Wednesday:

"Measurement of the $\pi^+\pi^$ cross section at BESIII" (PPHI, 16:40)

MC simulated with PHOKHARA

Eur.Phys.J. C**24**, 71-82 (2002) Phys. Rev. D**77**, 114005 (2008)

Data-MC comparison: e⁺e⁻ case

MC simulated with BABAYAGA 3.5

Nucl. Phys. B758, 227-253 (2006)

Fit to data

To get rid of the MC prediction:

Fit of the continouus mass spectrum in data with a polynomial and look for a peak in data: $p(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4$ Spare the region around J/ ψ .

Fit to data

Fit of the continouus mass spectrum in data with a polynomial and look for a peak in data: $p(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4$ Spare the region around J/ ψ .

No peaking structure found. ⇒ Set exclusion limit.

Exclusion limit

90% confidence level (CL) calculated with the algorithm by Rolke et al. (TRolke)

Nucl.Instrum.Meth., A551, 493-503 (2005)

Exclusion limit

We want to calculate it in bins of the mixing parameter ε :

$$\frac{d\sigma(e^+e^- \to \gamma'\gamma_{ISR} \to l^+l^-\gamma_{ISR})}{d\sigma(e^+e^- \to \gamma^*\gamma_{ISR} \to l^+l^-\gamma_{ISR})} = \frac{3\pi}{2N_f^{l+l-}} \cdot \frac{\varepsilon^2}{\alpha} \cdot \frac{m_{\gamma'}}{\delta_m}$$

J. D. Bjorken, R. Essig, P. Schuster, and N. Toro, Phys. Rev., D80, 075018 (2009)

Exclusion limit

Number of decay modes N_f

$$N_{f}^{l+l-} = \frac{\Gamma_{tot}}{\Gamma(\gamma' \rightarrow l^{+}l^{-})}$$

$$\Gamma_{tot} = \Gamma(\gamma' \rightarrow e^+ e^-) + \Gamma(\gamma' \rightarrow \mu^+ \mu^-) \cdot (1 + R(\sqrt{s}))$$

$$\Gamma(\gamma' \to l^+ l^-) = \frac{\alpha \varepsilon^2}{3m_{\gamma'}^2} \sqrt{m_{\gamma'}^2 - 4m_l^2} (m_{\gamma'}^2 + 2m_l^2) \quad \text{Phys. Rev. D88, 015032 (2013)}$$

$$R = \frac{\sigma(e^+e^- \rightarrow hadrons)}{\sigma(e^+e^- \rightarrow \mu^+\mu^-)}$$

taken from PDG 2014

Systematic uncertainty

Systematic uncertainty is estimated and implemented bin-by-bin (possible with TRolke algorithm¹)

Completely dominated by the uncertainty of the R ratio (everywhere above 5%)

uncertainty of the R ratio

background subtraction	< 0.5%
fitting error	< 1%
mass resolution	< 1%
R ratio	> 5%
sum	> 5%

¹ see https://root.cern.ch/root/html/tutorials/math/Rolke.C.html

Summary

- Goal of the analysis is to search a dark photon signal using $\mu^+\mu^-\gamma_{ISR}$ and $e^+e^-\gamma_{ISR}$ events
- no evidence has been found between 1.5 and 3.4 GeV/c²
- an exclusion limit with 90% confidence has been calculated with the TRolke algorithm in bins of the mass and mixing parameter of the dark photon
- values down to $\varepsilon < 7 \cdot 10^{-3}$ can 10⁻² be excluded (LOE 2013 (g-2) best exclusion limit in this mass range (g-2) ± 20 R A R 201 favored 10⁻³ Thank you E774 for your attention! PRELIMINARY E141 10-4 10⁻² 10⁻¹ $m_{\gamma'}$ [GeV/c²] 10 1

Backup

Particle identification

JOHANNE

$$e^{+}e^{-} \rightarrow \mu^{+}\mu^{-}\gamma_{ISR}$$

$$DLL(\mu,e) = 2 \cdot \log\left(\frac{p(\mu)}{p(e)}\right) > 0$$

$$f_{0}^{0} = \int_{0}^{0} \int_{0}^{0}$$

