Charm Physics at BESIII

Peilian LIU

On behalf of the BESIII Collaboration

Institute of High Energy Physics, CAS

liupl@ihep.ac.cn

28th Rencontres de Blois, May 29 – June 03, Blois, France

Outline

- BEPCII Collider and BESIII Detector
- Data samples of charmed hadrons
- \blacksquare Λ_c^+ decays
 - $\triangleright \Lambda_c^+$ hadronic decays
 - $\rightarrow \Lambda_c^+$ semi-leptonic decays
- D decays
 - D hadronic decays
 - D leptonic and semi-leptonic decays
- Summary

Beijing Electron Positron Collider (BEPCII)

- ✓ Beam energy: 1.0 2.3 GeV
- ✓ Luminosity reached the design value (04/05/2016)
 1.0×10³³cm⁻²s⁻¹

1.0 Tesla super-conducting magnet

BESIII Detector

Be beam pipe

Muon Counters

9/8 RPC layers (barrel/endcaps) Cut-off momentum: 0.4 GeV/c

Csl(TI) ElectroMagnetic Calorimeter

 σ_E/E (at 1 GeV): 2.3% $\sigma_{z,\phi}$ (at 1 GeV) 5 ~ 7 mm

Time of Flight (TOF)

 $\sigma_{\rm T}$: 68/100 ps (barrel/endcaps)

Drift Chamber(MDC)

 σ_p/p (at 1 GeV): 0.32%

 $\sigma_{dE/dx} < 5\%$ (Bhabha)

Data samples of charmed meson and baryon

- ✓ 2.93 fb⁻¹ data@3.773 GeV for $D^0 \overline{D}^0/D^+D^-$ production
- ✓ 0.48 fb⁻¹ data@4.009 GeV for $D_s^+D_s^-$ production
- ✓ 0.57 fb⁻¹ data@4.599 GeV for $\Lambda_c^+ \overline{\Lambda}_c^-$ production

Charm physics at BESIII: Motivation

- Unitarity test of CKM matrix: measuring $|V_{cs}|$ and $|V_{cd}|$
- Lattice QCD calibration: $f_{D\to K/\pi}(q^2)$ and other formfactors, $f_{D(s)+}$ decay constant
- New Physics: finding evidence of CP violation, rare decays, significant deviations from CKM unitarity or from LQCD calculations, $D \overline{D}$ mixing
- Providing inputs for b-physics

Measurement of Absolute Branching Fractions

Illustration:
$$e^+e^- \rightarrow \psi(3770) \rightarrow D\overline{D}$$

➤ Single Tag (ST)

- ✓ Tag the charmed meson or baryon via hadronic decays with large Branching Fractions (BF)
- ✓ $\Delta E \equiv E_{rec.} E_{beam}$ ✓ $M_{BC}^2 c^4 \equiv E_{beam}^2 p^2 c^2$

> Double Tag (DT)

- ✓ Reconstruct signals in the recoil side against
- ✓ For (semi)leptonic decays: $U_{miss} \equiv E_{miss} p_{miss}$
- ► **Absolute BF** $BF(D \to sig) = \frac{N_{sig}}{N_{tag} \times \epsilon_{sig} / \epsilon_{tag,sig}}$. only need the yields (N) and the efficiencies(ε) of ST and DT

The advantage of data at threshold

- $\checkmark D_{(s)} \overline{D}_{(s)} / \Lambda_c^+ \overline{\Lambda}_c^-$ pairs produced at threshold, no additional hadrons
- Effectively suppress the background with the DT technique
- Enable the measurement of absolute BF, without knowing the number of $D\overline{D}$ pairs
- Most systematic uncertainty in tag side are cancelled out.

Absolute hadronic BFs of Λ_c^+ baryon

□ ST events

ST yield of
$$\overline{\Lambda}_c^- \to \alpha$$

$$N_{ST}^{\alpha} = N_{\Lambda_c^+ \overline{\Lambda}_c^-} \cdot BF_{\alpha} \cdot \varepsilon_{ST}^{\alpha}$$

□ DT events

Total DT yield of $\Lambda_c^+ \to s$ over 12 $\overline{\Lambda}_c^- \to \alpha$

$$N_{DT}^{s} = N_{\Lambda_{c}^{+}\overline{\Lambda}_{c}^{-}} \cdot BF_{s} \sum_{\alpha} BF_{\alpha} \cdot \varepsilon_{DT}^{\alpha}$$

☐ Extraction of the 12 BFs: Simultaneously did 24 fits

- ✓ BFs are constraint to common variable $N_{\Lambda_c^+ \overline{\Lambda}_c^-}$
- ✓ Considering statistical and systematic correlations among the different hadronic modes
- \checkmark $\chi^2/\text{ndf} = 9.9/(24-13) = 0.9$

Absolute hadronic BFs of Λ_c^+ baryon

The first absolute measurement of the Λ_c^+ BFs at the $\overline{\Lambda}_c^+\overline{\Lambda}_c^-$ production threshold, since the Λ_c^+ discovery 30 years ago PRL116, 052001 (2016)

Mode	This work (%)	PDG (%)	BELLE B
pK_S^0	$1.52 \pm 0.08 \pm 0.03$	1.15 ± 0.30	00004119640
$pK^-\pi^+$	$5.84 \pm 0.27 \pm 0.23$	5.0 ± 1.3	$6.84 \pm 0.24^{+0.21}_{-0.27}$
$pK_S^0\pi^0$	$1.87 \pm 0.13 \pm 0.05$	1.65 ± 0.50	
$pK_S^0\pi^+\pi^-$	$1.53 \pm 0.11 \pm 0.09$	1.30 ± 0.35	
$pK^-\pi^+\pi^0$	$4.53 \pm 0.23 \pm 0.30$	3.4 ± 1.0	
$\Lambda \pi^+$	$1.24 \pm 0.07 \pm 0.03$	1.07 ± 0.28	
$\Lambda \pi^+ \pi^0$	$7.01 \pm 0.37 \pm 0.19$	3.6 ± 1.3	
$\Lambda \pi^+ \pi^- \pi^+$	$3.81 \pm 0.24 \pm 0.18$	2.6 ± 0.7	
$\Sigma^0\pi^+$	$1.27 \pm 0.08 \pm 0.03$	1.05 ± 0.28	
$\Sigma^+\pi^0$	$1.18 \pm 0.10 \pm 0.03$	1.00 ± 0.34	
$\Sigma^{+}\pi^{+}\pi^{-}$	$4.25 \pm 0.24 \pm 0.20$	3.6 ± 1.0	
$\Sigma^+\omega$	$1.56 \pm 0.20 \pm 0.07$	2.7 ± 1.0	

- ✓ The precisions are improved by factors of 3~6
- ✓ The golden mode $\Lambda_c^+ \to pK^-\pi^+$
 - > Our measurement is consistent with the PDG value, but lower than Belle's with 2σ significance
 - ightharpoonup Improved absolute BF of $pK^-\pi^+$ together with Belle's result are key to calibrate other decays

Absolute BF of $\Lambda_c^+ \to \Lambda e^+ \nu_e$

PRL115, 221805 (2015)

11 ST modes except $\Lambda_c^+ \to \Sigma^+ \omega$

$$BF(\Lambda_c^+ \to \Lambda e^+ \nu_e) = (3.63 \pm 0.38 \pm 0.20)\%$$

- The first absolute measurement
- **◆** Improvement of the precision of the PDG value (2.9±0.5)%
- Important for the testing and calibration of the LQCD calculations

Observation of $D^+ o \omega \pi^+$ and Evidence for $D^0 o \omega \pi^0$

Observation of $D^+ o \omega \pi^+$ and Evidence for $D^0 o \omega \pi^0$

Suppress background via DT method

PRL116, 082001 (2016)

- Predications of $BF(D \to \omega \pi) \sim 1.0 \times 10^{-4}$
- Studied by CLEO-c with ST method →upper limit

Mode	This work	Previous measurements
$D^+ \to \omega \pi^+$	$(2.79 \pm 0.57 \pm 0.16) \times 10^{-4}$	$<3.4\times10^{-4}$ at 90% C.L.
$D^0 \to \omega \pi^0$	$(1.17 \pm 0.34 \pm 0.07) \times 10^{-4}$	$< 2.6 \times 10^{-4}$ at 90% C.L.
$D^+ \to \eta \pi^+$	$(3.07 \pm 0.22 \pm 0.13) \times 10^{-3}$	$(3.53 \pm 0.21) \times 10^{-3}$
$D^0 \to \eta \pi^0$	$(0.65\pm0.09\pm0.04)\times10^{-3}$	$(0.68 \pm 0.07) \times 10^{-3}$

✓ Improved understanding of Uspin nd SU(3)-flavor symmetry breaking effects in *D* decays

Study of $D^+ o \omega e^+ \nu_e$ and Search for $D^+ o \phi e^+ \nu_e$

PRD92, 071101R(2015)

Dots: data

Arrows: signal region

Mode	This work	Previous
$\omega e^+ \nu_e$	$(1.63 \pm 0.11 \pm 0.08) \times 10^{-3}$	$(1.82 \pm 0.18 \pm 0.07) \times 10^{-3}$
$\phi e^+ \nu_e$	$< 1.3 \times 10^{-5} $ (90%C.L.)	$< 9.0 \times 10^{-5} (90\% C.L.)$

- \square No significant excess of $D^+ \rightarrow \phi e^+ \nu_e$ is observed
- **■** More precise BFs

Form factors measurement of $D^+ \rightarrow \omega e^+ \nu_e$

PRD92, 071101R(2015)

$$rac{d\Gamma}{dq^2 d\cos\theta_1 d\cos\theta_2 d\chi dm_{\pi\pi\pi}} = \mathcal{F}(V(q^2), A_{1,2}(q^2) \cdots)$$

A five-dimensional maximum likelihood fit is performed in the space of m^2 , q^2 , $\cos\theta_1$, $\cos\theta_2$ and χ

■ Amplitude analysis of $D^+\rightarrow \infty e^+v$ is performed for the first time

$$r_V = V(0)/A_1(0) = 1.24 \pm 0.09 \pm 0.06$$

 $r_2 = A_2(0)/A_1(0) = 1.06 \pm 0.15 \pm 0.05$

Study of dynamics of of $D^0 o (K^-/\pi^-)e^+\nu_e$

BF(
$$D^0 \to K^- e^+ \nu_e$$
) = (3.505 ± 0.014 ± 0.033)%

BF(
$$D^0 \to \pi^- e^+ \nu_e$$
) = (0.295 ± 0.004 ± 0.003)%

PRD92,072012(2015)

$$\begin{aligned} \frac{d\Gamma}{dq^2} &= \\ \frac{G_F^2}{24\pi^3} |V_{cs(d)}|^2 |\vec{p}_{K^-(\pi^-)}|^3 \\ |f_+^{K(\pi)}(q^2)|^2 \end{aligned}$$

$$f_{+}(q^{2})$$

Simple pole model:

$$=rac{f_{+}(0)}{1-rac{q^{2}}{M_{
m pole}^{2}}}$$

Modified pole model:

$$= \frac{f_{+}(0)}{(1 - \frac{q^2}{M_{\text{pole}}^2})(1 - \alpha \frac{q^2}{M_{\text{pole}}^2})}$$

Series expansion:

$$= \frac{1}{P(t)\Phi(t,t_0)} a_0(t_0) \times (1 + r_1(t_0)[z(t,t_0)])$$

Study of dynamics of of $D^0 o (K^-/\pi^-)e^+\nu_e$

PRD92,072012(2015)

$$|V_{cs(d)}|f_{+}^{D^0 \to (K^-/\pi^-)e^+\nu_e}(0) \to f_{+}^{D^0 \to (K^-/\pi^-)e^+\nu_e}(0)$$

Input $V_{cs(d)}$ of CKM Fitter

Decay dynamics and CP asymmetry in $D^+ o K_L^0 e^+ \nu_e$

- Regardless of long flight distance, K_L^0 interact with EMC and deposit part of energy, thus giving position information
- After reconstructing all other particles, K_L^0 can be inferred with position information and constraint $U_{miss} \rightarrow 0$ PRD92, 112008(2015)

■ Simultaneous fit to observed numbers of DT candidates

✓ The first measurement of BF($D^+ \rightarrow K_L e^+ \nu_e$)

$$A_{CP} \equiv \frac{BF(D^+ \to K_L e^+ \nu_e) - BF(D^- \to K_L e^- \overline{\nu}_e)}{BF(D^+ \to K_L e^+ \nu_e) + BF(D^- \to K_L e^- \overline{\nu}_e)} = (-0.59 \pm 0.60 \pm 1.48)\%$$

Study of $D^+ \rightarrow K^- \pi^+ e^+ \nu_e$

arXiv:1512.08627

$$BF(D^+ \to K^- \pi^+ e^+ \nu_e) = (3.71 \pm 0.03 \pm 0.08)\%$$
 $BF(D^+ \to K^- \pi^+ e^+ \nu_e)_{[0.8,1]} = (3.33 \pm 0.03 \pm 0.07)\%$

□ Fractions of the component

$$f(D^+ \to (K^- \pi^+)_{K^{*0}(892)} e^+ \nu_e) = (93.93 \pm 0.22 \pm 0.18)\%$$

 $f(D^+ \to (K^- \pi^+)_{S-wave} e^+ \nu_e) = (6.05 \pm 0.22 \pm 0.18)\%$

■ Parameters of K*0(892)

$$m_{K^{*0}(892)} = (894.60 \pm 0.25 \pm 0.08) \text{ MeV}/c^2$$

 $\Gamma_{K^{*0}(892)} = (46.42 \pm 0.56 \pm 0.15) \text{ MeV}/c^2$

About 15.6 K ST D_s⁻ events by using 9 ST modes

 $BF(D_s^+ \to \eta' X) = (8.8 \pm 1.8 \pm 0.5)\%$

Consistent with CLEO measurements $(11.7 \pm 1.8)\%$ [PRD79 112008(2009)]

Mac (GeV/c2)

$$BF(D_s^+ \to \eta' \rho^+) = (5.8 \pm 1.4 \pm 0.4)\%$$

Theoretical expection= $(3.0\pm0.5)\%$ [PRD84 074019(2011)]

Resolve the disagreement between theoretical predication and CLEO-c's previous measurement BF($D_s^+ \rightarrow \eta' \rho^+$)=(12.5±2.2)% [PRD58 052002(1998)]

cos0_

Other results

```
D^{+} \rightarrow \mu^{+} v_{\mu} (Phys. Rev. D 89, 051104(R) (2014))

D^{+} \rightarrow K_{s}^{0} \pi^{+} \pi^{0} (Phys. Rev. D 89, 052001 (2014))

D^{0} \rightarrow \gamma \gamma and D^{0} \rightarrow \pi^{0} \pi^{0} (Phys. Rev. D 91, 112015 (2015))

Strong phase difference in D^{0} \rightarrow K^{-} \pi^{+} (Phys. Lett. B 734, 227(2014))

y_{cp} in D^{0} - \overline{D}^{0} oscillation (Phys. Lett. B 744, 339 (2015))

BF of D^{*0} decay (Phys. Rev. D 91, 031101(R) (2015))

Observation of \Lambda_{c}^{+} \rightarrow nK_{s}^{0} \pi^{+} BESIII preliminary
```

Summary

- With $D\overline{D}/D_s^+D_s^-/\Lambda_c^+\overline{\Lambda}_c^-$ produced at mass threshold, BESIII released many new results
 - □ Form factors measurement in (semi)leptonic decays of charmed hadrons provide important test to LQCD calculations and CKM matrix unitarity
 - □ Hadronic charmed hadrons decays improve the understanding of nonperturbative QCD
 - \blacksquare The first absolute BFs measurement of the Λ_c^+ hadronic decays
- BESIII is taking data at 4.18GeV to study physics related to D_s
- Many charm analyses are ongoing!

Thanks!