Measurements of strong phase in $D^0 \to K\pi$ decay and y_{CP} via quantum-correlations at BESIII Hajime Muramatsu, University of Minnesota (for the BESIII collaboration) - Strong phase in $D^0 \rightarrow K\pi$ decay - y_{CP} measurement #### **Beijing Electron Positron Collider (BEPC-II)** - A symmetric e⁺e⁻ collider, operating at Ecm ~ 2.0 ~4.6 GeV (Charm factory!). - It's in Beijing: Easy access to the downtown area of Beijing with a nearby subway station! #### **BESIII** detector - A powerful general purpose detector. - Excellent neutral and charged particle detection and identification with a large coverage. #### Data samples we have @ J/ψ peak : 1.2 B J/ψ decays and some scan in the vicinity of the peak. @ $\psi(3686)$ peak : 0.5 B $\psi(3686)$ decays and some scan in the vicinity of the peak. Above \overline{DD} threshold: 0.5/fb @ Ecm = 4.009 GeV, 1.9/fb @ Ecm = 4.26 GeV, 0.5/fb @ Ecm = 4.36 GeV, plus some scan samples as well. The above samples have been producing very rich Physics results such as hadron spectroscopy of Charmonia (e.g., h_c/η_c) and of Charmonium-like states (X/Y/Z). Today, I report recent results from BESIII based on a sample that was taken near DD threshold: 2.92/fb @Ecm = 3.773 GeV #### Sample at $E_{cm} = 3.773 \text{ GeV}$ - The total integrated luminosity of 2.92 fb⁻¹ at this energy point is the largest in the world to date. - In the selected hadronic events (multiple reconstructed charged/ neutral hadrons or tracks), they are dominated by; ``` e^+e^- \rightarrow \gamma^* \rightarrow \psi(3770) and e^+e^- \rightarrow \gamma^* \rightarrow (q\bar{q}) light hadrons in which \sigma(e^+e^- \rightarrow \psi(3770) \rightarrow hadrons)/\sigma(e^+e^- \rightarrow NR \rightarrow hadrons) \sim 1/2. ``` - Once $\psi(3770)$ is produced, it predominantly decays into a DD pair. For instance, we have ~21 M D⁰ (or \overline{D}^0) decays in this sample. - Relatively clean event environment. - When the two D mesons are reconstructed, the sample becomes almost background free. #### Things can be done with the sample taken at or around $E_{cm} = 3.773 \text{ GeV}$ - There are many interesting possible topics to study in D (weak) decays based on our sample, such as; - pure leptonic decays (e.g., extraction of $|V_{cd}|$ and/or its decay constant, f_D). - Semi-leptonic decays (e.g., extraction of their form factors, and then compare them vs B meson case). - With the largest sample of D mesons taken at the near threshold, one should look for rare/forbidden decays (e.g., FCNC, LNV, LFV). - or even $\psi(3770)$ itself such as $\psi(3770) \rightarrow$ non-DD final states. - But today, I report our attempt to measure some of the parameters of DD mixing using the unique characteristics of our $\psi(3770)$ data set taken at $E_{cm} = 3.773$ GeV. #### Introduction - DD mixing is highly suppressed by the GIM mechanism and by the CKM matrix elements within the Standard Model. - Observation of DD mixing, first seen by the B factories (HFAG: arXiv 1207.1158) and now observed by LHCb: PRL110, 101802 (2013). - Improving the constraints on the charm mixing parameter is important for testing the SM, such as long distance effects. - DD mixing is conventionally described by two parameters: $$x = 2(M_1-M_2)/(\Gamma_1+\Gamma_2), y = (\Gamma_1-\Gamma_2)/(\Gamma_1+\Gamma_2),$$ where $M_{1,2}$ and $\Gamma_{1,2}$ are the masses and widths of the neutral D meson mass eigenstates. (Flavor eigenstates, $D^0/\overline{D^0}$, are not the same as mass eigenstates, D_1/D_2) Or $$x' = x \cdot \cos \delta_{K\pi} + y \cdot \sin \delta_{K\pi}$$, $y' = y \cdot \cos \delta_{K\pi} - x \cdot \sin \delta_{K\pi}$. - $\delta_{K\pi}$ is the strong phase difference between the doubly Cabibbo suppressed (DCS) decay, $\overline{D^0} \rightarrow K^-\pi^+$ and the Cabibbo favored (CF) decay, $D^0 \rightarrow K^-\pi^+$ or $\langle K^-\pi^+|\overline{D^0}\rangle/\langle K^-\pi^+|D^0\rangle = -r \cdot e^{-i\delta}$. So one can connect (x,y) with (x',y') via $\delta_{K\pi}$. - In this talk, I present preliminary results on $\delta_{K\pi}$ and y using the quantum correlation between the produced D⁰ and D⁰ pair in data taken at BESIII. #### The decay rate of a correlated state For physical process producing D⁰D o o such as $$e^+e^- \rightarrow \gamma^* \rightarrow \psi(3770) \rightarrow D^0\overline{D}^0$$, the $D^0\overline{D^0}$ pair are in a quantum-correlated state. The quantum number of $\psi(3770)$ is $J^{PC} = 1^{-1}$. Thus, the $D^0\overline{D^0}$ pair in this process has C = -. For a correlated state with C = -, the two D mesons are anti-symmetric in the limit of CP invariance: $$\psi_{-} = \frac{1}{\sqrt{2}} (\left| D^{0} \right\rangle \left| \overline{D}^{0} \right\rangle - \left| \overline{D}^{0} \right\rangle \left| D^{0} \right\rangle)$$ - The two produced neutral mesons must have opposite CP (i.e., see Goldhaber and Rosner, PRD15, 1254 (1977). That is; - ▶ Final states of (CP+, CP+) or (CP-, CP-) are forbidden. - ▶ Final states of (CP+, CP-) are maximally enhanced (doubled). - ▶ Final states of CP± against inclusive states (Single tag or ST) are not affected. - \blacktriangleright Final states of (K- π +, CP±) are affected due to the interference between CF and DCS $(\delta_{K\pi}).$ #### Extracting $\delta_{K\pi}$ ▶ Neglecting higher orders in the mixing parameters (e.g., y²), one can arrive at the following relation: $$2 \cdot \mathbf{r} \cdot \mathbf{cos} \delta_{K\pi} + \mathbf{y} = (1 + R_{WS}) \cdot A_{CP \to K\pi},$$ where $R_{WS} \equiv \Gamma(\overline{D}^0 \to K^-\pi^+) / \Gamma(D^0 \to K^-\pi^+)$ and $$A_{CP \to K\pi} \equiv [B(D_2 \to K^-\pi^+) - B(D_1 \to K^-\pi^+)] / B(D_2 \to K^-\pi^+) + B(D_1 \to K^-\pi^+)].$$ • We can extract $A_{CP\to K\pi}$ by tagging one D (tag side) with exclusive CP-eigenstates which then defines the eigenvalue of the other D ($A_{CP\pm} \equiv \langle K^-\pi^+|D^{1,2}\rangle$). - ▶ Then, with the knowledge of r, y, and R_{WS} from the 3rd parties (HFAG2013 and PDG), we could derive $\cos \delta_{K\pi}$ in the end. - ▶ The rest of the analysis becomes measurements of $B(D_{CP\pm} \to K^-\pi^+)$ while simultaneously reconstructing the D_{CP} on the tag side. #### Measuring $B(D_{CP\pm} \rightarrow K^-\pi^+)$ Double-Tag technique: $$B(D_{CP\pm} \to K\pi) = [B(D_{CP\mp} \to CP^{\mp} \text{ states}) \times B(D_{CP\pm} \to K\pi)]/B(D_{CP\mp} \to CP^{\mp} \text{ states})$$ = $(n_{K\pi,CP\mp}/n_{CP\mp}) \cdot (\epsilon_{CP\mp}/\epsilon_{K\pi,CP\mp})$, where $n_{K\pi,CP\mp}$ are yields of " $K\pi$ " when CP states are simultaneously reconstructed on the tag side n_{CP∓} are yields of CP states (independent of how the other D decays) ϵ_{CP} and $\epsilon_{K\pi,CP}$ are the corresponding reconstruction efficiencies. - "Yields" are extracted from M_{bc} distributions : $M_{BC} = \sqrt{E_{beam}^2 \vec{p}_D^2}$ - CP states on Tag side (8 modes): $CP+ K^+K^-, \pi^+\pi^-, K_S^0\pi^0\pi^0, \pi^0\pi^0, \rho^0\pi^0$ $CP- K_S^0\pi^0, K_S^0\eta, K_S^0\omega$ where we reconstruct $K_S \rightarrow \pi^+\pi^-$, $\pi^0/\eta \rightarrow \gamma\gamma$, $\omega \rightarrow \pi^+\pi^-\pi^0$, $\rho \rightarrow \pi^+\pi^-$. • Notice that most of systematics on the tag side get canceled in $B(D_{CP\pm}\to K\pi)$. The remaining systematics (reconstruction/simulation) of $K\pi$ are also canceled in the determination of $A_{CP\to K\pi}$. # Yields of CP states (n_{CP∓}) (reconstruct only one of the two neutral D) # Can also check "CP purity" When D^0 and \overline{D}^0 are reconstructed, final states with the same CP should yield zero events. | ſ | | Mode | Yield(tag KK | \mathcal{K}) efficiency(%) | Yield(tag $K_S^0 \pi^0$) | efficiency($\%$) | |---|-----|-------------------|----------------|-------------------------------|---------------------------|--------------------| | | CP+ | $K^0_S\pi^0\pi^0$ | $8 \pm 3(*)$ | 11.80 ± 0.11 | 171 ± 14 | 7.20 ± 0.09 | | | CP+ | $\rho\pi^0$ | $13 \pm 8(*)$ | 24.44 ± 0.16 | 299 ± 19 | 15.87 ± 0.16 | | | CP- | $K_S^0 \omega$ | 158 ± 13 | 11.02 ± 0.11 | 7 ± 3(*) | 6.77 ± 0.08 | - * Consider as one of the systematics. # Yields of Kπ in double tags $(n_{Kπ,CP})$ (reconstruct CP-final state from one D decay, with " $K\pi$ " from the other D) # **Preliminary fit results** | Mode(CP) | ST Yield | $\operatorname{Efficiency}(\%)$ | |-------------------|------------------------|---------------------------------| | K^+K^- | $56156 \pm 261 \pm 61$ | 62.99 ± 0.26 | | $\pi^+\pi^-$ | $20222 \pm 187 \pm 38$ | 65.58 ± 0.26 | | $K^0_S\pi^0\pi^0$ | $25156 \pm 235 \pm 81$ | 16.46 ± 0.07 | | $\pi^0\pi^0$ | $7610\pm156\pm56$ | 42.77 ± 0.21 | | $\rho\pi^0$ | $41117 \pm 354 \pm 68$ | 36.22 ± 0.21 | | $K_S^0\pi^0$ | $72710 \pm 291 \pm 34$ | 41.95 ± 0.21 | | $K^0_S\eta$ | $10046 \pm 118 \pm 27$ | 35.46 ± 0.20 | | $K^0_S\omega$ | $31422 \pm 215 \pm 49$ | 17.88 ± 0.10 | | Mode | DT Yield | $\operatorname{efficiency}(\%)$ | |-----------------------------------|---------------------|---------------------------------| | $K^{\pm}\pi^{\mp}, K^{+}K^{-}$ | $1669 \pm 42 \pm 4$ | 42.65 ± 0.21 | | $K^{\pm}\pi^{\mp},\pi^{+}\pi^{-}$ | $608 \pm 25 \pm 3$ | 44.32 ± 0.21 | | $K^\pm\pi^\mp, K^0_S\pi^0\pi^0$ | $800 \pm 30 \pm 4$ | 12.68 ± 0.13 | | $K^{\pm}\pi^{\mp},\pi^0\pi^0$ | $212\pm15\pm0$ | 29.75 ± 0.18 | | $K^{\pm}\pi^{\mp},\rho\pi^{0}$ | $1240\pm36\pm1$ | 25.44 ± 0.16 | | $K^{\pm}\pi^{\mp}, K^0_S\pi^0$ | $1688\pm42\pm4$ | 29.06 ± 0.17 | | $K^{\pm}\pi^{\mp}, K^0_S\eta$ | $231\pm16\pm1$ | 24.76 ± 0.16 | | $K^{\pm}\pi^{\mp}, K^0_S\omega$ | $725 \pm 28 \pm 1$ | 12.47 ± 0.06 | - These yields allow us to obtain $B(D_{CP\pm} \to K^-\pi^+)$ which then provides $A_{CP\to K\pi}$. - $A_{CP\to K\pi}$ = (12.77±1.31(stat.)^{+0.33}_{-0.31}(syst.))%. # Preliminary result on $\delta_{K\pi}$ - We have measured $A_{CP\to K\pi} = (12.77\pm1.31(\text{stat.})^{+0.33}_{-0.31}(\text{syst.}))\%$. - Using the relation, $2 \cdot r \cdot \cos \delta_{K\pi} + y = (1 + R_{WS}) \cdot A_{CP \to K\pi}$, and with external inputs from HFAG2013 and PDG (R_D = 3.47±0.06%, y=6.6±0.9%, R_{WS} = 3.80±0.05%), we obtain $\cos \delta_{K\pi} = 1.03\pm 0.12 (\text{stat.})\pm 0.04 (\text{syst.})\pm 0.01 (\text{external}).$ Our result is consistent with and more precise than the recent CLEO result (PRD86, 112001 (2012)): $$\cos \delta_{K\pi} = 1.15^{+0.19}_{-0.17} (\text{stat.})^{+0.00}_{-0.08} (\text{syst.}).$$ # Determination of the mixing parameter, y_{CP} y_{CP} is defined as; $2 \cdot y_{CP} = (|q/p|+|p/q|) \cdot y \cdot \cos \phi \cdot (|q/p|-|p/q|) \cdot x \cdot \sin \phi$, where p and q are mixing parameters, and $\phi = \arg(q/p)$ is the weak phase difference of the mixing amplitudes. Notice: for no CPV case, $p = q = 1/\sqrt{2}$ and $y_{CP} \equiv y$. $|D_1\rangle = p|D^0\rangle + q|\overline{D}^0\rangle$ $|D_2\rangle = p|D^0\rangle - q|\overline{D}^0\rangle$ For D decays into any CP-eigenstate, its decay rate can be described as; $$R(D^0/\overline{D^0} \rightarrow CP^{\pm}) \propto |A_{CP\pm}|^2 \cdot (1 \mp y_{CP}).$$ - When one D decays into a CP-eigenstate, while the other D decays semi-leptonically, the decay rate can be given by; $$R(D^0/\overline{D}^0 \rightarrow CP^{\pm}, \text{ and } \overline{D}^0/D^0 \rightarrow \text{semi-lep}) \propto |A_1|^2 \cdot |A_{CP^{\pm}}|^2$$. - Semileptonic decay width does not depend on the CP of its parent D. - Yet, the total width of its parent D depends on CP. - Result: semileptonic BF of $D_{1,2}$ gets modified by a factor of $1\pm y_{CP}$. - Combining the above two, and neglecting terms with y2 (or higher), one can arrive at $$y_{CP} = \frac{1}{4} \left(\frac{R_{l;CP+} R_{CP-}}{R_{l:CP-} R_{CP+}} - \frac{R_{l;CP-} R_{CP+}}{R_{l:CP+} R_{CP-}} \right)$$ #### Extracting y_{CP} in our experiment The expression for y_{CP} can be written as; $$y_{CP} = \frac{1}{4} \left[\frac{\tilde{B}_+}{\tilde{B}_-} - \frac{\tilde{B}_-}{\tilde{B}_+} \right]$$ where \tilde{B}_{\pm} is the branching fraction, averaged over different CP tag modes, α , that is obtained by minimizing $$\chi^2 = \sum_{\alpha} \frac{(\tilde{B}_{\pm} - B_{\pm}^{\alpha})^2}{(\sigma_{\pm}^{\alpha})^2}$$ - All branching fractions are obtained in a similar way, the double-tag method. - When the semileptonic decays are reconstructed, however, we use Umiss distributions to obtain their yields, instead of Mbc, $$U_{ m miss} \equiv E_{ m miss} - |\vec{p}_{ m miss}|$$, which peaks ~ 0 if only missing particle is neutrino. Tag modes: | Type | Modes | |-----------|---| | CP^+ | $K^+K^-, \pi^+\pi^-, K_S\pi^0\pi^0$ | | CP^- | $K_S^0 \pi^0, K_S^0 \omega, K_S^0 \eta$ | | l^{\pm} | $Ke\nu, K\mu\nu$ | # Yields of CP states $(n_{CP} \mp)$ (reconstruct only one of the two neutral D) # Yields of Kev in double tags $(n_{Kev,CP} \mp)$ (reconstruct CP-final states from one D decay, with "Kev" from the other D) # Yields of Kµv in double tags $(n_{Kµv,CP} \mp)$ (reconstruct CP-final states from one D decay, with "Kµv" from the other D) - $K\pi\pi^0$ shapes and sizes are fixed based on control samples of actual data. - The control samples are obtained by the same CP states and $K\pi\pi^0$, while ignoring the two photons from π^0 decays to calculate Umiss. See the next slide for detail. - Signal shape: MC shape, convoluted with an asymmetric Gaussian. - Background: A 1st order polynomial. Kππ⁰ (dominant). # Fixing the Kππ⁰ shape - Obtain E_{extra} ≡ Sum of the all un-used energies deposited in EM calorimeter. - E_{extra} tends to be larger if it is $K\pi\pi^0$ due to the ignored extra photons from π^0 decay and is small if it is $K\mu\nu$. - We actually do require E_{extra} <0.2 GeV to select $K\mu\nu$ signal candidates. #### Fix shape - Fit to U_{miss} in $E_{extra}>0.5$ GeV where $K\mu\nu$ peak is suppressed. - The fitted shape ■ MC shape, convoluted with a Gaussian. Fix size $(K\pi\pi^0 \text{ yields in data in } E_{\text{extra}} < 0.2 \text{ GeV}) = R \times (K\pi\pi^0 \text{ yields in data in } E_{\text{extra}} > 0.5 \text{ GeV}),$ where R = $(K\pi\pi^0 \text{ yields in MC in } E_{\text{extra}} < 0.2 \text{ GeV})/(K\pi\pi^0 \text{ yields in MC in } E_{\text{extra}} > 0.5 \text{ GeV}).$ ### **Preliminary results** Fitted yields for each mode: | Modes | N_{tag} | $N_{tag,Ke\nu}$ | $N_{tag,K\mu\nu}$ | |-------------------|---------------------------------|-----------------|-------------------| | K^+K^- | 54307 ± 252 | 1216 ± 40 | 1093 ± 37 | | $\pi^+\pi^-$ | 19996 ± 177 | 427 ± 23 | 400 ± 23 | | $K_S^0\pi^0\pi^0$ | 19996 ± 177 24369 ± 231 | 560 ± 28 | 558 ± 28 | | $K^0_S\pi^0$ | 71419 ± 286 | 1699 ± 47 | 1475 ± 43 | | $K^0_S\omega$ | 21249 ± 157 | 473 ± 25 | 501 ± 26 | | $K^0_S\eta$ | 9843 ± 117 | 242 ± 17 | 237 ± 18 | After correcting for efficiencies (branching fractions), we arrive at $$y_{CP} = [-1.6\pm1.3(stat.)\pm0.6(syst.)]\%$$. - The result is statistically limited. - The systematic uncertainty mainly comes from fitting procedures. ## **Comparison with other measurements** - Our result is consistent with the world average (HFAG2013; this preliminary result is not included in the average). - Also consistent with the latest result from CLEO-c (PRD86, 112001 (2012)); $y_{CP} = (4.2 \pm 2.0 \pm 1.0)\%.$ (not listed in the figure). #### Summary - Quantum-correlated $D^0\overline{D^0}$ in e^+e^- annihilations near threshold: Unique way to measure the Charm mixing parameters. - Most precise measurement of strong phase difference in D⁰→ Kπ. Will improve the determination of mixing parameters, x and y. - Measurement of y_{CP}: Statistically limited, consistent with the world average. - Will collect larger "open-charm" data samples in years to come: Expect many interesting results.