Charmonium decays into light hadrons at BESIII

Jake Bennett Carnegie Mellon University On behalf of the BESIII collaboration

BESIII at **BEPCII**

- The physics goals of BESIII cover a diverse range: Light hadron spectroscopy, charm physics, τ physics, charmonium physics
- e⁺e⁻ collisions in the charmonium region
 - Use the properties and decays of charmonium states to study QCD

BESIII at BEPCII

See the other BESIII talks this week

• The physics goals of BESIII cover a diverse range:

Light hadron spectroscopy charm physics, τ physics, charmonium physics

Connection between X(1835) and $p\bar{p}$ threshold enhancement Suggestion of the existence of (1) a broad resonance below threshold and (2) a narrow state very close to $p\bar{p}$ threshold

X(1835) in J/ψ → γηK_SK_S M = 1844 ± 9(stat)⁺¹⁶₋₂₅(syst) MeV/c² Γ = 192⁺²⁰₋₁₇(stat)⁺⁶²₋₄₃(syst) MeV, $\mathcal{B}_{X(1835)}$ = [3.31^{+0.33}_{-0.30}(stat)^{+1.96}_{-1.29}(syst)]×10⁻⁵

Partial Wave Analysis of J/ψ to $\gamma \varphi \varphi$ Consistent model-dependent and model-independent results

Charmonium decays to light hadrons

- Charmonium decay dynamics
 - Observation of $h_c \rightarrow \gamma \eta'$ and evidence for $h_c \rightarrow \gamma \eta$
 - $\rho\pi$ puzzle and violation of the 12% rule
 - Helicity selection rule suppression processes
- XYZ physics in light quark sector
 - Y(2175) as possible s-quark counterpart of Y(4260)
- Opportunities for theory/experiment collaboration
 - Mass independent amplitude analysis of $\pi^0 \pi^0$ system PRD 92, 052003 (2015)

Accepted by PRL PRD 93, 072003 (2016) BESIII Preliminary

PRD 91, 052017 (2015)

5

Observation of $h_c \rightarrow \gamma \eta'$ and evidence for $h_c \rightarrow \gamma \eta$

- **Goal**: Obtain a better understanding of charmonium and charmonium-like states
- Method: Study pattern of masses, transitions between states, etc.
- Below DD threshold, all states have been observed and are well described by $c\overline{c}$ potential models
- Knowledge of P-wave spin-singlet h_c rather sparse

Search for new decays modes with BESIII sample of 448 x 10⁶ ψ ' events ullet

Observation of $h_c \rightarrow \gamma \eta'$ and evidence for $h_c \rightarrow \gamma \eta$

Study of ψ decays to $\Xi^{-}\overline{\Xi}^{+}$ and $\Sigma(1385)^{+}\overline{\Sigma}(1385)^{\pm}$

 pQCD predicts exclusive decays of J/ψ and ψ' into light hadrons should have widths proportional to the square of the wave function at the origin (the "12% rule")

$$Q_h \equiv \frac{\mathcal{B}(\psi(3686) \to \text{hadrons})}{\mathcal{B}(J/\psi \to \text{hadrons})} \approx \frac{\mathcal{B}(\psi(3686) \to e^+e^-)}{\mathcal{B}(J/\psi \to e^+e^-)} \approx 12\%$$

 Current theoretical explanations of the pπ puzzle are unsatisfactory, especially for decays to baryon pairs

$$Q_{\rho\pi} = \frac{\mathcal{B}(\psi(2S) \to \rho\pi)}{\mathcal{B}(J/\psi \to \rho\pi)} = (0.13 \pm 0.05)\%$$

- More experimental measurements are desirable
- Use large BESIII charmonium samples to make precision measurements of J/ ψ and ψ ' decays to $\Xi^{-}\overline{\Xi}^{+}$ and $\Sigma(1385)^{\mp}\overline{\Sigma}(1385)^{\pm}$

Study of ψ decays to $\Xi^{-}\overline{\Xi}^{+}$ and $\Sigma(1385)^{+}\overline{\Sigma}(1385)^{\pm}$

- Based on (223.7 ± 1.4) x 10⁶ J/ ψ and (106.4 ± 0.9) x 10⁶ ψ ' decays
- Avoid full reconstruction of both baryons (low efficiency)
 - Identify $\overline{\Xi}^+$ or $\overline{\Sigma}(1385)^{\pm}$ from recoil mass against $\pi^{\pm}\Lambda$

$$M_{\pi^{\mp}\Lambda}^{\text{recoil}} = \sqrt{(E_{CM} - E_{\pi^{\mp}\Lambda})^2 - \vec{p}_{\pi^{\mp}\Lambda}^2}$$

Study of ψ decays to $\Xi^{-}\overline{\Xi}^{+}$ and $\Sigma(1385)^{+}\overline{\Sigma}(1385)^{\pm}$

• Based on (223.7 ± 1.4) x 10⁶ J/ ψ and (106.4 ± 0.9) x 10⁶ ψ ' decays

Comparison of the branching fractions for $\psi \to \Xi^- \bar{\Xi}^+$, $\Sigma(1385)^{\pm} \bar{\Sigma}(1385)^{\pm}$ (in units of 10⁻⁴) Source $J/\psi \rightarrow$ $\psi(3686) \rightarrow$ $\Sigma(1385)^{-}\Sigma(1385)^{+}$ Mode 8-8+ $\Sigma(1385)^{+}\Sigma(1385)$ 8-84 $\Sigma(1385)^{-}\Sigma(1385)$ $\Sigma(1385)^{+}\Sigma(1385)$ This work $10.96 \pm 0.12 \pm 0.71$ $12.58 \pm 0.14 \pm 0.78$ $\pm 0.05 \pm 0.14$ $0.85 \pm 0.06 \pm 0.06$ 0.84 $10.40 \pm 0.06 \pm 0.74$ MarkI [5] 14.00 ± 5.00 < 2.0 MarkII [6] $11.40 \pm 0.80 \pm 2.00$ $8.60 \pm 1.80 \pm 2.20$ $10.3 \pm 2.4 \pm 2.5$ DM2 [7] $7.00 \pm 0.60 \pm 1.20$ $10.00 \pm 0.40 \pm 2.10$ $11.9 \pm 0.4 \pm 2.5$ BESII [8, 12] $9.00 \pm 0.30 \pm 1.80$ $12.30 \pm 0.70 \pm 3.00$ $15.0 \pm 0.8 \pm 3.8$ $3.03 \pm 0.40 \pm 0.32$ CLEO [9] $2.40 \pm 0.30 \pm 0.20$ BESI [26] $0.94 \pm 0.27 \pm 0.15$ 10.30 ± 1.30 10.30 ± 1.30 1.80 ± 0.60 PDG [3] 8.50 ± 1.60

PRD 93, 072003 (2016)

$$\frac{\mathcal{B}(\psi(3686) \to \Xi^- \bar{\Xi}^+)}{\mathcal{B}(J/\psi \to \Xi^- \bar{\Xi}^+)} = (26.73 \pm 0.50 \pm 2.30)\%$$

$$\frac{\mathcal{B}(\psi(3686) \to \Sigma(1385)^- \bar{\Sigma}(1385)^+)}{\mathcal{B}(J/\psi \to \Sigma(1385)^- \bar{\Sigma}(1385)^+)} = (7.76 \pm 0.55 \pm 0.68)\%$$

$$\frac{\mathcal{B}(\psi(3686) \to \Sigma(1385)^+ \bar{\Sigma}(1385)^-)}{\mathcal{B}(J/\psi \to \Sigma(1385)^+ \bar{\Sigma}(1385)^-)} = (6.68 \pm 0.40 \pm 0.50)\%$$

Not in agreement with 12% rule

PWA on χ_{c2} decays to VP

- Precise measurements of Helicity Selection Rule suppressed processes are crucial for a better understanding of the underlying dynamics of the strong interaction
 - Charmonium hadronic decays could be useful to clarify mechanisms that may violate the leading pQCD results
- Use χ_{c2} decays to VP to quantify HSR-violating mechanisms
 - Intermediate meson loops may contribute sizable branching ratios for $\chi_{c2} \rightarrow K^*K + c.c.$
- Based on full ψ ' sample (448.1 ± 2.9) x 10⁶ events

PWA on χ_{c2} decays to VP

- PWA with relativistic Breit-Wigner lineshapes (masses and widths fixed at PDG values)
 - BR rather sizable compared to HSR conserving channel $\mathcal{B}(\chi_{c2} \rightarrow K^*(892)^0 \bar{K}^*(892)^0)$ $(4.67 \pm 0.55 \pm 0.85) \times 10^{-3}$
 - Isospin conservation suppresses intermediate loop transitions?

 $Br(\chi_{c2} \to \rho^+ \pi^- + c.c.)$ [(0.64 ± 0.28 ± 0.07) × 10⁻⁵]

Br($\chi_{c2} \rightarrow$	$K^*K)$	$Br(K^*)$	\rightarrow	$K\pi$)	and	$Br(\chi_{c2}$	\rightarrow	$a_2\pi)Br(a_2$	\rightarrow	KK
-----	-------------------------	---------	-----------	---------------	----------	-----	----------------	---------------	-----------------	---------------	----

Mode	Charged $(\times 10^{-4})$	Neutral (× 10^{-4})
$K^{*}(892)K$	$1.6 \pm 0.1 \pm 0.2$	$1.3 \pm 0.2 \pm 0.2$
$K_{2}^{*}(1430)K$	$8.0 \pm 0.3 \pm 0.6$	$6.5 \pm 0.5 \pm 0.9$
$K_{3}^{*}(1780)K$	$1.0 \pm 0.1 \pm 0.2$	$1.1 \pm 0.3 \pm 0.3$
$a_2(1320)\pi$	$0.90 \pm 0.16 \pm 0.23$	$0.66 \pm 0.08 \pm 0.12$

Prediction from intermediate meson loop transitions:

 $[(4.0 \sim 6.7) \times 10^{-5}]$

PRD 81 014017 (2010)

J. Bennett

Study of $J/\psi \rightarrow \eta \phi \pi^+ \pi^-$

- Y(2175) as possible s-quark counterpart of the Y(4260)
 - Observed by BaBar in _____ $e^+e^- \rightarrow \gamma_{ISR}\phi f_0(980): J^{PC} = 1^{--}$
 - Confirmed by BES $[J/\psi \rightarrow \eta \phi f_0(980)]$, and Belle $[e^+e^- \rightarrow \gamma_{ISR}\phi f_0(980)]$
 - Many possible interpretations predict masses consistent with experimental measurements: ss hybrid, excited φ state, tetraquark, ΛΛ bound state, FSI
- Based on (225.3 ± 2.8) x 10^6 J/ ψ events

PRD 91, 052017 (2015)

Study of $J/\psi \rightarrow \eta \phi \pi^+ \pi^-$

- Based on (225.3 ± 2.8) x 10^6 J/ ψ events
- Y(2175) observed with significance > 10 σ

Collaboration	Process	$M ({\rm MeV}/c^2)$	Γ (MeV)
BABAR [2]	$e^+e^- \rightarrow \phi f_0$ (ISR)	$2175 \pm 10 \pm 15$	$58 \pm 16 \pm 20$
BESII [3]	$J/\psi \rightarrow \eta \phi f_0(980)$	$2186 \pm 10 \pm 6$	$65 \pm 23 \pm 17$
BELLE [4]	$e^+e^- \rightarrow \phi f_0$ (ISR)	$2079 \pm 13^{+79}_{-28}$	$192 \pm 23^{+25}_{-61}$
BABAR (updated) [5]	$e^+e^- \rightarrow \phi f_0$ (ISR)	$2172 \pm 10 \pm 8$	$96 \pm 19 \pm 12$
BESIII	$J/\psi \to \eta \phi f_0(980)$	$2200\pm6\pm5$	$104\pm15\pm15$

 $\mathcal{B}(J/\psi \to \eta Y(2175), Y(2175) \to \phi f_0(980), f_0(980) \to \pi^+\pi^-) = (1.20 \pm 0.14(\text{stat}) \pm 0.37(\text{syst})) \times 10^{-4}$

 Also repeat fit including interference between the Y(2175) and the direct decay

Parameters	Constructive	Destructive
M (MeV/ c^2)	2171 ± 10	2170 ± 9
Γ (MeV)	128 ± 26	126 ± 25
Signal yields	400 ± 167	744 ± 40
relative angle $\Phi(rad)$	-0.51 ± 0.78	0.60 ± 0.64

14

Study of $J/\psi \rightarrow \eta \phi \pi^+ \pi^-$

 Also provides a unique opportunity to investigate properties of other states: f₁(1285), η(1295), η(1405)/η(1475), X(1835), X(1870)

- Fit ηππ mass spectrum against the φ
- η(1405) signal with 3.6σ
 significance
- No evidence of X(1835) or X(1870)

B(J/ $\psi \rightarrow \phi f_1 \rightarrow \eta \phi \pi^+ \pi^-$) = (1.20 ± 0.06 ± 0.14) x 10⁻⁴

```
B(J/\psi → \phi\eta(1405) → \eta\phi\pi^{+}\pi^{-}) = (2.01 ± 0.58 ± 0.82) x 10<sup>-4</sup>
```

Amplitude analysis of the $\pi^0 \pi^0$ system in radiative J/ ψ decays

- Study scalar and tensor spectrum in radiative J/ ψ decays into two pseudoscalar mesons
 - Only 0⁺⁺ and 2⁺⁺ amplitudes contribute significantly
 - Glueball states predicted in the region around 1.5 and 2 GeV/c²
 - Presence of broad, overlapping states makes parameterization challenging

Amplitude analysis of the $\pi^0\pi^0$ system in radiative J/ ψ decays

- Perform mass independent amplitude analysis
 - Useful for model development to describe hadronic interactions
 - Great opportunity for collaboration between theory and experiment!
 - Similar approach is under investigation for other systems (e.g. K_sK_s)

Many more results in light hadron spectroscopy

PRD 87, 112004 (2013) PRD 93, 052010 (2016)

PRD 91, 092006 (2015) Measurements of $\psi(3686) \rightarrow (\gamma) K^{\mp} \Lambda \overline{\Xi}^{\pm}$

Observation of the isospin-violating decay $J/\psi \rightarrow \phi \pi^0 f_0(980)$

Studies of the $p\overline{p}$ spectrum in hadronic J/ ψ decays

- PRD 91, 112008 (2015)
- Study of χ_{cI} decaying into $\phi K^*\overline{K}$

events / 10 MeV/c² 55 009 Amplitude analysis of $\chi_{c1} \rightarrow \eta \pi^+ \pi^-$

200

M(ηπ) [GeV/c²]

IS/(10 MeV/c

1.5

M(π*π') [GeV/c³

I/D by A Szczeni RD84, 112009

2.5

M(K'A) (GeV/c²)

600

400

200

18

Conclusions

- High statistics charmonium data sets are producing many interesting results!
 - Observation of $h_c \rightarrow \gamma \eta'$ and evidence for $h_c \rightarrow \gamma \eta$
 - Tests of the 12% rule in ψ decays to $\Xi^{-}\overline{\Xi}^{+}$ and $\Sigma(1385)^{+}\overline{\Sigma}(1385)^{\pm}$
 - Study of helicity selection rule suppressed process $\chi_{c2} \rightarrow VP$
 - Y(2175) observed in J/ ψ decays to $\eta \phi \pi^+ \pi^-$
 - Mass independent amplitude analysis of $\pi^0\pi^0$ system
 - ... many more results in light hadron spectroscopy!
- Still more to come!