DIS 2015 - XXIII International Workshop on Deep-Inelastic Scattering and Related Subjects

Collins asymmetries in inclusive charged KK and $\mathrm{K} \pi$ pairs at BABAR

I. Garzia - INFN Sezione di Ferrara, F. Anulli - INFN Sezione di Roma on behalf of the BABAR Collaboration

Introduction: the Collins effect

Our understanding of the hadronic physics depends strongly on what we know about the parton distributions functions (PDFs) and fragmentation functions (FFs)

- Universal
- Non-perturbative objects

Transverse Momentum Dependent (TMD) FFs \Rightarrow to study the spin-dependent observables

- when only spinless hadrons (π, K) are considered, we have:

$$
\mathrm{q}^{\uparrow} \rightarrow \mathrm{hX}: \quad D_{1}^{q \uparrow}\left(z, \mathbf{P}_{\perp} ; s_{q}\right)=D_{1}^{q}\left(z, P_{\perp}\right)+\frac{P_{\perp}}{z M_{h}} \frac{H_{1}^{\perp q}}{\square}\left(z, P_{\perp}\right) \mathbf{s}_{q} \cdot\left(\mathbf{k}_{q} \times \mathbf{P}_{\perp}\right)
$$

Unpolarized FF

Collins FF [NPB 396, 161 (1993)]: chiralodd function, related to the probability that a transversely polarized quark (q^{\uparrow}) fragments into a spinless hadron

Physics motivation:

- $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation experiments are the most clean environment to study fragmentation processes
- evolution of TMD objects
- Global analysis (PRD 78,032011 (2007); PRD 87,094019 (2013), PRD 91,014034 (2015)):
- combines Semi Inclusive Deep Inelastic Scattering (SIDIS) and e e^{+}data
- extraction of H^{\perp} and transversity parton distributions h_{1} for the " u " and " d " quarks

Collins effect in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation

In $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{q} \overline{\mathrm{q}}$, spins unknown, but $\mathrm{s}_{\mathrm{q}} \| \mathrm{s}_{\overline{\mathrm{q}}}$ whit transverse spin component $\sim \sin ^{2} \theta$

- exploit this correlation by using hadrons in opposite jets
- define favored ($u \rightarrow \pi^{+}, \mathrm{d} \rightarrow \pi^{-}$) and disfavored $\left(\mathrm{d} \rightarrow \pi^{+}, \mathrm{u} \rightarrow \pi^{-}, \mathrm{s}(\overline{\mathrm{s}}) \rightarrow \pi^{ \pm}\right)$FFs

$$
\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{q} \overline{\mathrm{q}} \rightarrow \mathrm{~h}_{1} \mathrm{~h}_{2} \mathrm{X} \quad(\mathrm{q}=\mathrm{u}, \mathrm{~d}, \mathrm{~s}) \Rightarrow \sigma \propto \cos \left(\phi_{1}+\phi_{2}\right) \mathrm{H}_{1}^{\perp(h 1)} \times \mathrm{H}_{1}{ }^{\perp\left(\mathrm{h}_{2}\right)}
$$

Azimuthal modulation wrt the quark spin direction:
Collins effect (or Collins asymmetry)

Example: Unlike $\pi \pi$ pairs (U)

Collins asymmetry for $\pi \pi$ PRD 90,052003 (2014)

Example: Unlike KK pairs (U)
Collins asymmetry for KK: Favored contribution to the fragmentation of the strange quark

Collins asymmetries for KK pairs not yet available

PEP-II and BaBar Detector

Reference frames

RF0
θ_{2} : angle between the $\mathrm{e}^{+} \mathrm{e}^{-}$axis and $\mathrm{P}_{\mathrm{h} 2}$;
φ_{0} : angle between the plane spanned by $\mathrm{P}_{\mathrm{h} 2}$ and the $\mathrm{e}^{+} \mathrm{e}^{-}$ axis, and the direction of $\mathrm{P}_{\mathrm{h} 1}$ perpendicular to $\mathrm{P}_{\mathrm{h} 2}$.

All quantities in $\mathrm{e}^{-} \mathrm{e}^{-}$center of mass

$$
\begin{aligned}
\frac{d \sigma\left(e^{+} e^{-} \rightarrow h_{1} h_{2} X\right)}{d \Omega d z_{1} d z_{2} d^{2} \vec{q}_{T}} & =\frac{3 \alpha^{2}}{Q^{2}} z_{1}^{2} z_{2}^{2}\left\{A(y) \mathcal{F}\left[D_{1} \bar{D}_{2}\right]+\right. \\
& \left.+B(y) \cos \left(2 \phi_{0}\right) \mathcal{F}\left[\left(2 \hat{h} \cdot \vec{k}_{T} \hat{h} \cdot \vec{p}_{T}-\vec{k}_{T} \cdot \vec{p}_{T}\right) \frac{H_{1}^{\perp} \bar{H}_{2}^{\perp}}{M_{1} M_{2}}\right]\right\}
\end{aligned}
$$

θ : angle between the $\mathrm{e}^{+} \mathrm{e}^{-}$axis and the thrust axis; $\varphi_{1,2}$: azimuthal angles between $\mathrm{P}_{\mathrm{h} 1(\mathrm{~h} 2)}$ and the scattering plane

All quantities in $\mathrm{e}^{+} \mathrm{e}^{-}$center of mass

RF0

Measurement of Collins effect

- Normalized azimuthal distribution for hadron pair with same charge (L), opposite charge (U), and the sum of the two samples (C)
- Collins effect is not simulated in uds-MC \rightarrow strong azimuthal MC modulation principally due to the detector acceptance
- nonzero Collins effect in data sample \rightarrow different combinations of fav and dis FF for L, U, and C

RF12: KK pairs

Double ratio of U/L and U/C normalized distributions: Collins effect measured by fitting the double ratio distributions with the function $\boldsymbol{B}+\boldsymbol{A} \cdot \cos \left(\phi_{i}\right)$

BaBar results for $\pi \pi$ pairs

Analysis Strategy

* Goal: simultaneous measurement of $\mathbf{K K}, \mathbf{K} \pi$, and $\pi \pi$ pairs
- Event and track selection
* we identify the three sample of hadron pairs (KK, $\mathrm{K} \pi, \pi \pi$), and we divide the two hadrons in opposite jets using the thrust axis
* we measure the azimuthal angles ϕ_{1} and ϕ_{2} in RF12, and ϕ_{0} in RF0
* we construct the normalized raw distributions for like (L), Unlike (U) and Charged ($\mathrm{C}=\mathrm{U}$ +L) hadron pairs: $\mathrm{R}^{\mathrm{i}}=\mathrm{N}^{\mathrm{i}}(\phi) /<\mathrm{N}>$
* we calculate the ratios of normalized distributions: U / L and U / C and we fit these distributions
* we extract the Collins asymmetries and we correct for the K / π misidentification, background contributions,...
- we study systematic effects
, RESULTS: $4 \times 4\left(z_{1}, z_{2}\right)$ bins, where $z_{1,2}=2 E_{h} / V_{\text {s }}$ is the hadron fractional energy
$\mathrm{Z}_{1.2}=(0.15-0.2),(0.2-0.3),(0.3-0.5),(0.5-0.9)$
- RF12 and RF0
- A^{UL} and A^{UC}

Event and track selection

More stringent cuts optimized in order to reduce biases on the KK pairs

EVENT SELECTION

- Number of charged tracks > 2
- Selection of two jets topology: thrust >0.8
- $\left|\cos \theta_{\text {thrust }}\right|<\mathbf{0 . 6}$
- Visible energy Evis $>11 \mathrm{GeV}$
- Most energetic photon $\mathrm{E}_{\gamma}<2 \mathbf{G e V}$

Thrust axis: charged tracks + neutral candidates; thrust axis direction chosen random

TRACK SELECTION

- Electrons and muons veto
- K and π in the DIRC acceptance region
- K / π fractional energy $z: 0.15<z<0.9$
- Opening angle $\theta_{\mathrm{h} \text {-thrust }}$ of hadron with respect to the thrust axis $<45^{\circ}$
- $\mathrm{Q}_{\mathrm{t}}<3.5 \mathrm{GeV}$, where Q_{t} is the transverse momentum of the virtual photon in the two hadrons center-of-mass energy

Study of MC asymmetry

Small asymmetry measured in the MC sample

- always much smaller than asymmetry measured in data

Detailed studies show that the main source of the MC asymmetries come from ISR

- $\mathrm{E}_{\text {vis }}>11 \mathrm{GeV}$ to reduce this contribution for KK pairs
- Similar distributions in the RF0 frame
- Final results will be corrected for the small residual MC bias

Linear configuration of $\left(\mathrm{z}_{1}, \mathrm{z}_{2}\right)$ bins used for the comparison

Extraction of $\mathrm{KK}, \mathrm{K} \boldsymbol{\pi}$ and $\boldsymbol{\pi} \boldsymbol{\pi}$ asymmetries (I)

GOAL: simultaneous extraction of the asymmetries corrected for backgrounds and K / π misidentification for each interval of fractional energy

- 3 samples: $\mathrm{KK}, \mathrm{K} \pi$, $\pi \pi$
- we fit independently the double ratio distributions of the three samples

$$
A_{K K}^{\text {meas }}=F_{u d s}^{\mathrm{KK}} \cdot A_{K K}^{\text {Collins }}+\sum_{i} F_{i}^{K K} \cdot A_{K K}^{i}
$$

Extraction of $\mathrm{KK}, \mathrm{K} \boldsymbol{\pi}$ and $\boldsymbol{\pi} \boldsymbol{\pi}$ asymmetries (I)

GOAL: simultaneous extraction of the asymmetries corrected for backgrounds and K / π misidentification for each interval of fractional energy

- 3 samples: $\mathrm{KK}, \mathrm{K} \pi$, $\pi \pi$
- we fit independently the double ratio distributions of the three samples

$$
A_{K K}^{\mathrm{meas}}=F_{u d s}^{\mathrm{KK}} \cdot A_{K K}^{\text {Collins }}+\sum_{i} F_{i}^{K K} \cdot A_{K K}^{i} \underset{\substack{\text { background } \\ \text { contribution }}}{\text { bincoc. }}
$$

1. Background sources:

\cdot mainly from $\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \mathbf{c} \overline{\mathbf{c}}$ events (more than $\left.30 \%\right)$; smaller contribution from $\mathrm{B} \overline{\mathrm{B}}, \tau^{+} \tau^{-}\left(\mathrm{A}_{b b} \sim \mathrm{~A}_{\tau} \sim 0\right)$

- we construct a D^{*}-enhanced MC and data control samples
- we calculate from MC the fraction $\left(F(f)_{\text {sig } / k \mathrm{~kg}}{ }^{\text {hh }}\right)$ of hadron pairs coming from signal (uds) and background events (c $\overline{\mathrm{c}}, \mathrm{B} \overline{\mathrm{B}}, \tau^{+} \tau^{-}$)

$$
\left\{\begin{aligned}
A_{K K}^{\text {meas }} & =F_{u d s}^{K K} \cdot A_{K K}^{\text {Collins }}+F_{c \bar{c}}^{K K} \cdot A_{K K}^{\text {charm }} \\
A_{K K}^{D^{*}} & =f_{u d s}^{K K} \cdot A_{K K}^{\text {Collins }}+f_{c \bar{c}}^{K K} \cdot A_{K K}^{\text {charm }}
\end{aligned}\right.
$$

$$
\begin{aligned}
& \mathrm{D}^{* \pm} \rightarrow \mathrm{D}^{0} \pi^{ \pm}, \mathrm{D}^{0} \rightarrow \mathrm{~K} \pi, \mathrm{D}^{0} \rightarrow \\
& \mathrm{~K} 3 \pi, \mathrm{D}^{0} \rightarrow \mathrm{~K} \pi \pi^{0}, \mathrm{D}^{0} \rightarrow \mathrm{~K}_{\mathrm{s}} \pi \pi
\end{aligned}
$$

Fraction of hadron pairs in the data sample (D*-enhanced sample)

Fractions of hadron pairs

From MC samples, we calculate the number of hadron pairs (KK, $\quad F_{i}=\frac{N_{i}^{(M C)}}{N_{\text {data }}}$

Similar distribution for D^{*}-enhanced and $\pi \pi$ samples

Extraction of $\mathrm{KK}, \mathrm{K} \pi$ and $\boldsymbol{\pi} \pi$ asymmetries (II)

GOAL: simultaneous extraction of the asymmetries corrected for backgrounds and K / π contamination for each intervals of fractional energy

- 3 samples: $\mathrm{KK}, \mathrm{K} \pi$, $\pi \pi$
- we fit independently the double ratio distributions of the three samples
background

$$
A_{K K}^{\text {meas }}=F_{u d s} \cdot A_{K K}^{\text {Collins }}+\sum_{i} F_{i}^{K K} \cdot A_{K K}^{i}
$$

2. K / π misidentification:

- we evaluate from MC the fraction $\left(\xi_{\text {hh }}{ }^{(h h)}\right)$ that a given hadron pair is reconstructed as KK , $\mathrm{K} \pi$, or $\pi \pi$ pair

$$
A_{K K}^{\text {meas }}=F_{u d s} \cdot\left(\sum_{n m} \xi_{n m}^{(K K)} \cdot A_{n m}^{\text {Collins }}\right)+F_{c \bar{c}}^{K K} \cdot\left(\sum_{n m} \xi_{n m}^{(K K)} \cdot A_{n m}^{\text {charm }}\right)
$$

The fractions are evaluated in all samples used in the analysis: uds $\left(\xi_{\text {hh }}{ }^{(\text {hh })}\right), D^{*}$-uds $\left(\xi_{\text {hh }}{ }^{\left.(h h) D^{*}\right)}\right.$, $\mathrm{c} \overline{\mathrm{c}}\left(\xi_{\mathrm{hh}}{ }^{(\mathrm{hh}) \mathrm{c} \bar{c}}\right), \mathrm{c} \overline{\mathrm{c}}-\mathrm{D}^{*}\left(\xi_{\mathrm{hh}}{ }^{\left.(\mathrm{hh}) \mathrm{c} \overline{\mathrm{c}} \mathrm{D}^{*}\right)}\right.$

$$
\begin{array}{lll}
\xi_{\mathrm{KK}}{ }^{\mathrm{KK}} \sim 86 \%-91 \% & \xi_{\mathrm{KK}}{ }^{\mathrm{KK}} \sim 1.5 \%-5 \% & \xi_{\pi \pi}{ }^{\mathrm{KK}} \sim 0.01 \%-0.1 \% \\
\xi_{\mathrm{KK}} \mathrm{~K}^{K} \sim 7.6 \%-13 \% & \xi_{\mathrm{K} \pi^{\mathrm{KK}} \sim 78 \%-90 \%} & \xi_{\pi \pi \pi^{K \pi} \sim 3.5 \%-4.5 \%} \\
\xi_{\mathrm{KK} \pi}{ }^{2 \pi} \sim 0.3 \%-1.3 \% & \xi_{\mathrm{K} \pi^{\mathrm{KK}} \sim 7.3 \%-16 \%} & \xi_{\pi \pi^{\pi \pi} \sim 95 \%-97 \%} \sim 9
\end{array}
$$

Simultaneous extraction of asymmetry

Three samples $(\mathrm{KK}, \mathrm{K} \pi, \pi \pi)+$ background $+\mathrm{K} / \pi$ misidentification \Rightarrow system of six equations and six unknown parameters

$$
\begin{aligned}
A_{K K}^{m e a s}= & F_{u d s}^{K K} \cdot\left(\xi_{K K}^{(K K)} A_{K K}+\xi_{K \pi}^{(K K)} A_{K \pi}+\xi_{\pi \pi}^{(K K)} A_{\pi \pi}\right)+ \\
& F_{c \bar{c}}^{K K} \cdot\left(\xi_{K K}^{(K K) c \bar{c}} A_{K K}^{c h}+\xi_{K \pi}^{(K K) c \bar{c}} A_{K \pi}^{c h}+\xi_{\pi \pi}^{(K K) c \bar{c}} A_{\pi \pi}^{c h}\right) \\
A_{K \pi}^{m e a s}= & F_{u d s}^{K \pi} \cdot\left(\xi_{K K}^{(K \pi)} A_{K K}+\xi_{K \pi}^{(K \pi)} A_{K \pi}+\xi_{\pi \pi}^{(K \pi)} A_{\pi \pi}\right)+ \\
& F_{c \bar{c}}^{K \pi} \cdot\left(\xi_{K K}^{(K \pi) c \bar{c}} A_{K K}^{c h}+\xi_{K \pi}^{(K \pi) c \bar{c}} A_{K \pi}^{c h}+\xi_{\pi \pi}^{(K \pi) c \bar{c}} A_{\pi \pi}^{c h}\right) \\
A_{\pi \pi}^{m e a s}= & F_{u d s}^{\pi \pi} \cdot\left(\xi_{K K}^{(\pi \pi)} A_{K K}+\xi_{K \pi}^{(\pi \pi)} A_{K \pi}+\xi_{\pi \pi}^{(\pi \pi)} A_{\pi \pi}\right)+ \\
& F_{c \bar{c}}^{\pi \pi} \cdot\left(\xi_{K K}^{(\pi \pi) c \bar{c}} A_{K K}^{c h}+\xi_{K \pi}^{(\pi \pi) c \bar{c}} A_{K \pi}^{c h}+\xi_{\pi \pi}^{(\pi \pi) c \bar{c}} A_{\pi \pi}^{c h}\right) \\
A_{K K}^{D^{*}}= & f_{u d s}^{K K} \cdot\left(\xi_{K K}^{(K K) D^{*}} A_{K K}+\xi_{K \pi}^{(K K) D^{*}} A_{K \pi}+\xi_{\pi \pi}^{(K K) D^{*}} A_{\pi \pi}\right)+ \\
& f_{c \bar{c}}^{K K} \cdot\left(\xi_{K K}^{(K K) c \bar{c}-D^{*}} A_{K K}^{c h}+\xi_{K \pi}^{(K K) c \bar{c}-D^{*}} A_{K \pi}^{c h}+\xi_{\pi \pi}^{(K K) c \bar{c}-D^{*}} A_{\pi \pi}^{c h}\right) \\
A_{K \pi}^{D^{*}=} & f_{u d s}^{K \pi} \cdot\left(\xi_{K K}^{(K \pi) D^{*}} A_{K K}+\xi_{K \pi}^{(K \pi) D^{*}} A_{K \pi}+\xi_{\pi \pi}^{(K \pi) D^{*}} A_{\pi \pi}\right)+ \\
& f_{c \bar{c}}^{K \pi} \cdot\left(\xi_{K K}^{(K \pi) c \bar{c}-D^{*}} A_{K K}^{c h}+\xi_{K \pi}^{(K \pi) c \bar{c}-D^{*}} A_{K \pi}^{c h}+\chi_{\pi \pi}^{(K \pi) c \bar{c}-D^{*}} A_{\pi \pi}^{c h}\right) \\
A_{\pi \pi}^{D^{*}=}= & f_{u d s}^{\pi \pi} \cdot\left(\xi_{K K}^{(\pi \pi) D^{*}} A_{K K}+\xi_{K \pi}^{(\pi \pi) D^{*}} A_{K \pi}+\xi_{\pi \pi}^{(\pi \pi) D^{*}} A_{\pi \pi}\right)+ \\
& f_{c \bar{c}}^{\pi \pi} \cdot\left(\xi_{K K}^{(\pi \pi) c \bar{c}-D^{*}} A_{K K}^{c h}+\xi_{K \pi}^{(\pi \pi) c \bar{c}-D^{*}} A_{K \pi}^{c h}+\xi_{\pi \pi}^{(\pi \pi) c \bar{c}-D^{*}} A_{\pi \pi}^{c h}\right)
\end{aligned}
$$

 asymmetries for light hadrons

Effect of the thrust axis reconstruction

The experimental method assumes the thrust axis as $q \bar{q}$ direction, but this is only a rough approximation

- RF12: the azimuthal angles are calculated respect to the thrust axis \rightarrow large smearing;
- RF0: no thrust axis needed \rightarrow smearing due only to PID and tracking resolution.
\Rightarrow Using the MC sample, we introduce in the simulation several values of asymmetries, and we study the differences between the simulated anc he reconstructed ones

Thrust/ $q \bar{q}$ opening angle

- RF12: strong dilution observed
- correction ranges between 1.3 to 2.3 for increasing z
- RF0: no dilution observed
- no correction needed

Same corrections applied for the three hadron pair combinations

Systematic uncertainties

A large number of systematic checks were done. The main contributions come from:

- MC uncertainties
- Particle identification (PID)
- Fit procedure
- Dilution method
- Evis cut

Additional check (negligible contributions):

- Beam polarization studies
- Asymmetry consistency between different data taking period
- Possible coupling between Collins and detector effect

Sum in quadrature of systematic uncertainties

Results: RF12

Simultaneous measurement of $\mathrm{KK}, \mathrm{K} \pi$ and $\pi \pi$ Collins asymmetries

- all corrections are applied

* Rising of the asymmetry as a function of z :
* more pronounced for U/L
* $\mathrm{A}^{\mathrm{UL}} \mathrm{KK}$ asymmetry slightly higher than pion asymmetry for high z
- KK asymmetry consistent with zero at lower z

Note that A^{UL} and A^{UC} asymmetries are obtained using the same data sample, and are strongly correlated

Results: RF0

Simultaneous measurement of $\mathrm{KK}, \mathrm{K} \pi$ and $\pi \pi$ Collins asymmetries

- all corrections are applied
* Rising of the asymmetry as a function of z :
* more pronounced for U/L
* $\mathrm{A}^{\mathrm{UL}} \mathrm{KK}$ asymmetry slightly higher than pion asymmetry for high z
*K asymmetry consistent with zero at lower z

Note that A^{UL} and A^{UC} asymmetries are obtained using the same data sample, and are strongly correlated

$\pi \pi$ consistency check

Comparison of the $\pi \pi$ asymmetries with those measured in the previous BaBar analysis: PRD 90, 052003 (2014)

- Different kinematic regions: asymmetries rescaled for $\left\langle\sin ^{2} \theta>\right|<1+\cos ^{2} \theta>$
* Average values of the data in the new $\left(\mathrm{z}_{1}, \mathrm{z}_{2}\right)$ intervals

$$
\frac{R^{U L}}{R^{L}}=1+\cos \left(\phi_{1}+\phi_{2}\right) \cdot A_{12}^{U L}=1+\cos \left(\phi_{1}+\phi_{2}\right) \cdot \frac{\left\langle\sin ^{2} \theta_{t h}\right\rangle}{\left\langle 1+\cos ^{2} \theta_{t h}\right\rangle} \cdot \frac{H_{1}^{\perp}(z) \bar{H}_{1}^{\perp}(z)}{D_{1}(z) \bar{D}_{1}(z)}
$$

- New and previous results are in good agreement each other
- we averaged those values falling in the new interval
- Cross check \Rightarrow make us confident about the goodness of the simultaneous extraction of $\mathrm{KK}, \mathrm{K} \pi$ and $\pi \pi$

Conclusions

- Simultaneous extraction of $\mathrm{A}_{\mathrm{KK}}, \mathrm{A}_{\mathrm{K} \pi}$, and $\mathrm{A}_{\pi \pi}$ Collins asymmetry
- Two reference frames: RF12 and RF0
- 16 ($\mathrm{z}_{1}, \mathrm{Z}_{2}$)-bins
- Good agreement with previous BaBar results (PRD 90,052009 (2014))

- Agreement with theoretical prediction !? [PL B659, 234 (2008); PRD 86, 034025 (2012)]
- A^{UL} asymmetry for KK are slightly larger than $\pi \pi$
- A^{UC} asymmetry for KK are slightly lower than $\pi \pi$

These results will be submitted for publication

Stay tuned and Thanks for your attention

Track selection

ON-PEAK DATA SAMPLE: $\mathbf{h}_{1} \mathbf{h}_{\mathbf{2}}$ invariant mass distribution

TRACK SELECTION

- Electrons and muons veto
- K and π in the DIRC acceptance region
- K / π fractional energy z : $\mathbf{0 . 1 5}<z<0.9$
- Opening angle $\theta_{\mathrm{h} \text {-thrust }}$ of hadron with respect to the thrust axis $<45^{\circ}$
- $\mathrm{Q}_{\mathrm{t}}<3.5 \mathrm{GeV}$, where Q_{t} is the transverse momentum of the virtual photon in the two hadrons center-of-mass energy

Fractions of hadron pairs

From MC samples, we calculate the number of hadron pairs (KK, $K \boldsymbol{\pi}$ and $\boldsymbol{\pi} \boldsymbol{\pi}$) coming from light quarks and background events:

$$
F_{i}=\frac{N_{i}^{(M C)}}{N_{d a t a}}
$$

We then calculate the corrected fractions in order to take into account the condition that their sum is equal to 1 :

$$
F_{i}^{c o r r}=F_{i}+\frac{\left(1-\sum_{j=u d s}^{c c, b b, \tau} F_{j}\right) * \sigma_{i}^{2}}{\sum_{j=u d s}^{c c, b b, \tau} \sigma_{j}^{2}}
$$

Similar distribution for D^{*}-enhanced and $\pi \pi$ samples

Systematic uncertainties

- MC uncertainties: we check the bias by using different track selection requirements:
- different acceptance region for tracks and different $\mathrm{E}_{\mathrm{vis}}$ cuts applied
- the largest deviation of the bias w.r.t. the standard selection is combined in quadrature with the MC statistical error and taken as systematic uncertainties
- Particle identification (PID): few percent change in the asymmetry by changing the PID cuts
- new K / π fractions calculated using the corresponding selectors
- we calculate the "final asymmetry" (after all correction applied), and we take the average difference as systematic contribution
- Fit procedure: different angular bin size, higher arming contributions
- Dilution method: the error on the correction factors is assigned as systematic uncertainty
- Evis cut: we compare the MC-corrected asymmetry in the data sample by changing the $\mathrm{E}_{\text {vis }}$ requirements

Additional check (negligible contributions):

- Beam polarization studies
- Asymmetry consistency between different data taking period
- Possible coupling between Collins and detector effect

Sum in quadrature of systematic uncertainties

Systematic uncertainties (II)

Additional check (negligible contributions):

- Beam polarization studies
- Asymmetry consistency between different data taking period
- Higher harmonic contribution and possible coupling between Collins and detector effect
function used to parameterize the detector dependence

Collins effect: $\sigma(\theta, \phi) \sim 1+\frac{\sin ^{2} \theta}{1+\cos ^{2} \theta} A_{C o l l} \cos (2 \phi) \quad$ Detector effect: $\epsilon(\theta, \phi) \sim 1+f(\theta) A_{a c c} \cos (2 \phi)$

$$
\begin{gathered}
\sigma \cdot \varepsilon=1+\frac{\sin ^{2} \theta}{1+\cos ^{2} \theta} A_{\text {Coll }}^{i} \cos (\phi)+f^{i}(\theta) A_{a c c}^{i} \cos (\phi)++\frac{\sin ^{2} \theta}{1+\cos ^{2} \theta} f^{i}(\theta) \cdot A_{\text {Coll }}^{i} A_{a c c}^{i} \cdot \cos ^{2}(\phi) \\
U / L \sim 1+\left[f^{U} A_{a c c}^{U}-f^{L} A_{a c c}^{L}\right] \cos (\phi)+\frac{\sin ^{2} \theta}{1+\cos ^{2} \theta}\left[A_{\text {Coll }}^{U}-A_{\text {Coll }}^{L}\right] \cos (\phi) \\
\left.+\frac{\sin ^{2} \theta}{1+\cos ^{2} \theta}\left[A_{\text {Coll }}^{U} \cdot f^{U}(\theta) A_{\text {acc }}^{U}-A_{\text {Coll }}^{L} \cdot f^{L}(\theta) A_{\text {acc }}^{L}\right] \cos ^{2}(\phi) .\right] \text { extra term }
\end{gathered}
$$

RF12: comparison of $\pi \pi$ asymmetry from previous results

BaBar ($0.15<z<0.9$) Belle $(0.2<z<1)$
$\int \mathcal{\sim} \sim 468 \mathrm{fb}^{-1} \quad \int \mathcal{\sim} \sim 547 \mathrm{fb}^{-1}$ PRD 90, 052003(2014) PRD 86, 039905(E) (2012)
\Rightarrow Large discrepancy in the last two bins of z :

- bin-by-bin correction factors (30\%)
$-z<0.9$ to remove the
contamination from $\mu \mu \gamma$ background and exclusive events
\Rightarrow Slightly higher at lower z

RF0: comparison of $\pi \pi$ asymmetry from previous results

