BES Experiment at BEPCII

OUTLINE

- · BEPCII/BESIII
- Physics results
 - > Light hadron
 - > Charmonium
 - > Charm
- Summary

BEPCII: a high luminosity double-ring collider

22 mrad crossing angle

Beam energy: 1.0-2.3GeV

Luminosity:

 $1\times10^{33} \text{ cm}^{-2}\text{s}^{-1}$

Optimum energy

1.89 GeV

No. of bunches:

93

Bunch length:

1.5 cm

Total current:

0.91 A

SR mode:

0.25A @ 2.5 GeV

BESIII Detector (Option 2)

Use many bunches and SC mini-beta.

SC RF

Beam magnets

BESIII Detector

BESIII Detector

```
Berylium beam pipe
Small-celled, helium-based MDC:
        |\cos \theta| < 0.83 \text{ (all 43 layers)}, < 0.93 \text{ (20 layers)}
        \sigma_p/p = 0.58 % at 1 GeV/c; dE/dx resol = 6% at 1 GeV/c (hadron)
TOF (2 layers in barrel; 1 layer endcap)
        \sigma_T = 80 ps barrel (Bhabha); \sigma_T = 100 ps endcap
EMC
        crystal length: 28 cm (15 X_0)
        energy: 2.5%, space 0.6 cm at 1 GeV
Superconducting Magnet - 1 T
Muon Counter
        9 layers of RPCs in barrel; 8 in endcap
```

Data taking at BESIII

- So far BESIII has collected:
 - 2009: 225 Million J/ ψ
 - 2009: 106 Million $\psi'(\sim 4 \times CLEO c)$
 - 2010-11: 2.9 fb⁻¹ ψ (3770) (~3.5×CLEO-c)
 - May 2011: 0.5fb⁻¹ @4010 MeV (one month) for Ds and XYZ spectroscopy
- BESIII will also collect:
 - more $J/\psi, \psi', \psi(3770)$
 - data at higher energies (for XYZ searches, R scan and Ds physics)

Year	Running Plan
2012	J/ψ : 1 billion / ψ (25): 0.5 billion (approved)
2013	4170 MeV: Ds decay R scan (E > 4 GeV)
2014	$\psi(2S)/\tau$ / R scan (E > 4 GeV)
2015	ψ(3770): 5-10 fb ⁻¹ (our final goal)

Red: to be approved by BESIII Collaboration

Light Hadron(see Yajun's talk for detail)

- pp mass thereshould enhancement
- X(1835)
- $a^0(980)$ $f^0(980)$ mixing
- $J/\psi \rightarrow \omega \pi + \pi \eta$

pp threshold enhancement @BESII

 If fitted with a S-wave resonance

$$M = 1859_{-10-25}^{+3} \text{ MeV/c}^2$$

 $\Gamma < 30 \text{ MeV/c}^2 (90\% \text{ CL})$

- Theoretical speculation:
 - pp bound state?
 - FSI effect?
 -

$J/\psi \to \gamma p\overline{p}$

pp threshold enhancement @BESIII

$$\psi' \to \pi^+ \pi^- J/\psi, J/\psi \to \gamma p \overline{p}$$

$$M=1861^{+6}_{-13}^{+7}_{-26} MeV/c^{2}$$

 $\Gamma < 38 \text{ MeV/c}^2 (90\% \text{ CL})$

Chinese Physics C 34(2010)421

Consistent observation by BESIII!

pp threshold enhancement @BESIII

 $J/\psi \to \gamma p\overline{p}$

Fit result:

Mass= $1861.6 \pm 0.8 MeV / c^2$

 Γ < 8 MeV(90%CL)

X(1835) at BESII

- The X(1860) should be detected in other decay modes.
- G.J. Ding and M.L. Yan suggest η'ππ to be a favorable mode. (PR C₇₂, o15208 (2005))
 - there is gluon content in pp
 - η' has strong coupling to gluons
- Confirmation of X(1835) is necessary with BESIII ~225M J/ψ data sample

X(1835) at BESIII

X(1835) confirmed by BESIII

Two additional structures are observed around
2.1 GeV and 2.3 GeV
Maybe exist f1(1510)

PRL 106, 072002 (2011)

Fitting results

Red line: Contribution of ①+② Black line: Total background

- Fitted with four resonances
- Three bkg components
 - ① η' sideband
 - 2 J/ψ→π°π⁺π⁻η′
 - 3 Phase Space

Resonance	M(MeV/c²)	Γ(MeV/c²)	Stat.sig.
X(1835)	1836.5±3.0+5.6 _{-2.1}	$190.1 \pm 9.0^{+38}_{-36}$	>20σ
X(2120)	$2122.4 \pm 6.7^{+4.7}_{-2.7}$	$83 \pm 16^{+31}_{-11}$	7.2σ
X(2370)	2376.3±8.7 ^{+3.2} _{-4.3}	$83 \pm 17^{+44}_{-6}$	6.4σ

$a_0(980) - f_0(980)$ mixing

- Light scalar mesons f₀ and a₀ are still controversial.
- Described as quark-antiquarks, four quarks, KK-bar molecule, qq-bar q hybrids, etc.
- Study of mixing important to clarify their nature.
- $J/\psi \rightarrow \phi f_0 \rightarrow \phi a_0 \rightarrow \phi \eta \pi$ and $\chi_{c1} \rightarrow a_0 \pi^o \rightarrow f_0 \pi^o \rightarrow \pi^+ \pi^- \pi^o$ provide complementary information:

$$\xi_{fa}(s) = \frac{d\Gamma_{X \to Yf_0(980) \to Ya_0(980) \to Y\pi^0\eta(s)}}{d\Gamma_{X \to Yf_0(980) \to Y\pi\pi(s)}}$$

$$\xi_{af}(s) = \frac{d\Gamma_{X \to Ya_0(980) \to Yf_0(980) \to Y\pi\pi(s)}}{d\Gamma_{X \to Ya_0(980) \to Y\pi^0\eta(s)}}$$

Mixing intensity

$a_0(980) - f_0(980)$ mixing

Mixing intensity

*ξ_{fa}= (0.60±0.20(stat.)±0.12(sys.)±0.26(para)% (<1.1% @90% C.L.)

 $*\xi_{af}$ = (0.31±0.16(stat.)±0.14(sys.)±0.03(para)%

(<1.0% @90% C.L.)

our upper limit

our measurement

$J/\psi \rightarrow \omega \eta \pi^{+}\pi^{-}$

Fitted result of X(1870):

- •M = $(1877.3 \pm 6.3) \text{ MeV}/c^2$
- • $\Gamma = (57 \pm 12) \text{ MeV}/c^2$
- •Significance: 7.1σ

- The fit is performed under the assumption that the interference between the resonances and background can be ignored.
- Current results cannot settle down whether X(1870) is actually $\eta_2(1870)$ ($\Gamma = 225 \pm 14$ MeV/ C^2) or a new resonance.

Charmonium spectrum below open charm threshold

η_c the lightest charmonium state

η_c resonance parameters from $\psi' \rightarrow \gamma \eta_c$

Simultaneous fit with modified Breit-Wigner (hindered M1) with considering interference between η_c and non- η_c decays

Mass and Width of η_c

BESIII preliminary

- mass = $2984.4 \pm 0.5_{stat} \pm 0.6_{syst}$ MeV/c²
- width = $30.5 \pm 1.0_{\text{stat}} \pm 0.9_{\text{syst}} \text{ MeV}$
- $\phi = 2.35 \pm 0.05_{\text{stat}} \pm 0.04_{\text{syst}} \text{ rad}$

The world average in PDG2010 was using earlier results.

$h_c(^1P_1)$, singlet 1P wave state

- Predicted for a long time
- Hyperfine splitting of1P states (spin-spin)
- > iso-spin forbidden transition $\psi' \rightarrow \pi^0 h_c$
- Mass and product Brs from CLEO-c
 [PRL101,182003(2008)]

	Inclusive	Exclusive
Counts	1146 ± 118	136 ± 14
Significance	10.0σ	13.2σ
$M(h_c)$ (MeV)	$3525.35 \pm 0.23 \pm 0.15$	$3525.21 \pm 0.27 \pm 0.14$
$\mathcal{B}_1 imes \mathcal{B}_2 imes 10^4$	$4.22 \pm 0.44 \pm 0.52$	$4.15 \pm 0.48 \pm 0.77$

Observe h_c in inclusive reaction

E1-tagged $\psi' \rightarrow \pi^0 h_c, h_c \rightarrow \gamma \eta_c$

PRL 104, 132002 (2010)

Inclusive $\psi' \rightarrow \pi^0 h_c$

 $M(h_c)=3525.40\pm0.13 MeV$ $N(h_c)=3679\pm319$ $\Gamma(h_c)=0.73\pm0.45 MeV$

prediction. Consistent with CLEO-c result:3525.35±0.23

and theoretical

 $N(h_c) = 10353 \pm 1097$ $B(\psi' \rightarrow \pi^0 h_c) = (8.4 \pm 1.3) \times 10^{-4}$ $B(h_c \rightarrow \gamma \eta_c) = (54.3 \pm 6.7)\%$

Consistent with CLEO-c result: Br($\psi' \to \pi^0$ h_c) × Br(h_c $\to \gamma$ η_c)= (4.22 \pm 0.44 \pm 0.52) ×10⁻⁴

First

observation

Observe h_c in exclusive reaction

BESIII Preliminary

Simultaneous fit to π^0 recoiling mass $M(h_c) = 3525.31 \pm 0.11 \pm 0.15 \text{ MeV/c}^2$

 $\Gamma(h_c) = 0.70 \pm 0.28 \pm 0.25 \text{ MeV}$

 $N = 832 \pm 35$

 $\chi \chi^2 / \text{d.o.f.} = 32/46$

Consistent with

BESIII inclusive results PRL104,132002(2010)

and

CLEO-c exlusive results $M(h_c)=3525.21\pm0.27\pm0.14 \text{ MeV/c}^2$ N = 136 ± 14

PRL101, 182003(2008)

$\eta_c(2S)$ (never confirmed in M1 transition)

- First "observation" by Crystal Ball in 1982 (M=3.592GeV, Br=0.2%-1.3% from $\psi' \rightarrow \gamma X$, never confirmed. Experimental challenge for **50MeV photon**.)
- Published results about $\eta_c(2S)$ observation:

Experiment	$M [\mathrm{MeV}]$	$\Gamma [{ m MeV}]$	Process
Belle [1]	$3654 \pm 6 \pm 8$		$B^{\pm} \to K^{\pm} \eta_c(2S), \eta_c(2S) \to K_S K^{\pm} \pi^{\mp}$
CLEO $[2]$	$3642.9 \pm 3.1 \pm 1.5$	$6.3 \pm 12.4 \pm 4.0$	$\gamma \gamma \to \eta_c(2S) \to K_S K^{\pm} \pi^{\mp}$
BaBar [3]	$3630.8 \pm 3.4 \pm 1.0$	$17.0 \pm 8.3 \pm 2.5$	$\gamma \gamma \to \eta_c(2S) \to K_S K^{\pm} \pi^{\mp}$
BaBar [4]	$3645.0 \pm 5.5^{+4.9}_{-7.8}$	_	$e^+e^- \to J/\psi c\bar{c}$
PDG [5]	3638 ± 4	14 ± 7	

- Combined with the results based on two-photon processes from BaBar and Belle reported at ICHEP 2010, the world average $\Gamma(\eta_c(2S))=12\pm3$ MeV
- Decay mode studied: $\psi' \rightarrow \gamma \eta_c(2S) \rightarrow \gamma K_s K \pi (K^+K^- \pi^0 \text{ etc. in progress})$, better chance with 106M ψ' data at BESIII.

Simultaneous fit of $\eta_c(2S)$ and χ_{cJ}

- $> \eta_c(25)$ signal: modified BW (M1) with fixed width. (The resolution is extrapolated from χ_{cJ})
- $ightharpoonup \chi_{cJ}$ signal: MC shape smeared with Gaussian.
- ightharpoonup BG from $e^+e^-
 ightharpoonup K_s$ K π (ISR), $\psi'
 ightharpoonup K_s$ K π (FSR), $\psi'
 ightharpoonup \pi^0$ K K π , : are measured from data.

Preliminary measurements from $\psi' \rightarrow \gamma \eta_c(2S) \rightarrow \gamma KsK\pi$

$$M(\eta_c(2S))=3638.5\pm2.3_{stat}\pm1.0_{sys}$$
 (MeV/c²)

$$\Rightarrow$$
 Br($\psi' \rightarrow \gamma \eta_c(2S) \rightarrow \gamma KsK\pi$)=(2.98 \pm 0.57_{stat} \pm 0.48_{sys}) \times 10⁻¹

Br(
$$\eta_c(25) \rightarrow KK\pi$$
)=(1.9 ± 0.4 ± 1.1)% from BaBar

$$>$$
Br($\psi' \rightarrow \gamma \eta_c(2S)$)=(4.7 $\pm 0.9_{stat} \pm 3.0_{sys}$) $\times 10^{-4}$

CLEO-c: $\langle 7.6 \times 10^{-4} \rangle$ (PRD81,052002(2010))

Potential model: $(0.1-6.2)\times10^{-4}$ (PRL89,162002(2002))

$\psi' \rightarrow \gamma P(\pi^0, \eta, \eta')$, arise surprises

 $V \rightarrow \gamma$ P are important tests for various mechanisms:

Vector meson Dominance Model (VDM); Couplings & form factor; Mixing of $\eta-\eta'(-\eta_c)$; FSR by light quarks; 12% rule and " ρ π puzzle".

$$R_{(c\bar{c})} = \frac{Br((c\bar{c}) \rightarrow \gamma \eta)}{Br((c\bar{c}) \rightarrow \gamma \eta')}$$
 $LO\text{-pQCD}$
 $\downarrow \downarrow$
 $R_{\Psi'} \simeq R_{J/\Psi}$
PRP 112,173 (1984)

CLEO-c: J/ ψ , ψ' , $\psi'' \to \gamma$ P $R_{J/\psi} = (21.1 \pm 0.9)\%$ No Evidence for $\psi' \to \gamma \pi^0$ or $\gamma \eta$ $Br(\psi' \to \gamma \eta') = (1.19 \pm 0.09)\%$ $R_{\psi'} < 1.8\%$ at 90% CL $R_{\psi'} < R_{J/\psi}$ PRD 79, 111101 (2009)

$\psi' \rightarrow \gamma P$ at BESIII

PRL 105, 261801 (2010)

$\psi' \rightarrow \gamma \pi^0$ (First observation)

$$R_{\psi} = 1.10 \pm 0.38 \pm 0.07\% < R_{J/\psi}$$

Mode	B(ψ') [x10 ⁻⁶]	B(J/ψ) [x10 ⁻⁴]	Q (%)
$\gamma\pi^0$	1.58±0.42	0.35±0.03	4.5 ± 1.3
γη	1.38±0.49	11.04±0.34	0.13 ± 0.04
γη'	126±9	52.8±1.5	2.4 ± 0.2

Possible interpretation: Q. Zhao, Phys. Lett. B697, 52 (2011)

$\chi_{cJ} \rightarrow \gamma V(\rho, \omega, \phi)$

prediction by pQCD much lower than experiment

Longitudinal polarization dominant!

$\chi_c \rightarrow VV(V=\omega, \phi)$, suppressed decays

- $\chi_{cJ}
 ightarrow \phi$ ϕ and $\chi_{cJ}
 ightarrow \omega$ ω are Singly OZI suppressed
- $\chi_{c1} \rightarrow \phi \phi$ and $\chi_{c1} \rightarrow \omega \omega$ is suppressed by helicity selection rule.
- $\chi_{cJ} \rightarrow \phi \omega$ is doubly OZI suppressed, not measured before yet

Mode	$N_{ m net}$	ε (%)	$B(\times 10^{-4})$
$\chi_{c0} \rightarrow \phi \phi$	433 ± 23	22.4	$7.8 \pm 0.4 \pm 0.8$
$\chi_{c1} \rightarrow \phi \phi$	254 ± 17	26.4	$4.1 \pm 0.3 \pm 0.4$
$\chi_{c2} \rightarrow \phi \phi$	630 ± 26	26.1	$10.7 \pm 0.4 \pm 1.1$
$\rightarrow 2(K^+K^-)$			
$\chi_{c0} \rightarrow \phi \phi$	179 ± 16	1.9	$9.2 \pm 0.7 \pm 1.0$
$\chi_{c1} \rightarrow \phi \phi$	112 ± 12	2.3	$5.0 \pm 0.5 \pm 0.6$
$\chi_{c2} \rightarrow \phi \phi$	219 ± 16	2.2	$10.7 \pm 0.7 \pm 1.2$
$\rightarrow K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$			
Combined:			
$\chi_{c0} \rightarrow \phi \phi$			$8.0 \pm 0.3 \pm 0.8$
$\chi_{c1} \rightarrow \phi \phi$		— _{**}	$4.4 \pm 0.3 \pm 0.5$
$\chi_{c2} \rightarrow \phi \phi$		/	$10.7 \pm 0.3 \pm 1.2$
$\chi_{c0} \rightarrow \omega \omega$	991 ± 38	13.1	$9.5 \pm 0.3 \pm 1.1$
$\chi_{c1} \rightarrow \omega \omega$	597 ± 29	13.2	$6.0 \pm 0.3 \pm 0.7$
$\chi_{c2} \rightarrow \omega \omega$	762 ± 31	11.9	$8.9 \pm 0.3 \pm 1.1$
$\rightarrow 2(\pi^{+}\pi^{-}\pi^{0})$	/ /		
$\chi_{c0} \rightarrow \omega \phi$	76 ± 11	14.7	$1.2 \pm 0.1 \pm 0.2$
$\chi_{c1} \rightarrow \omega \phi$	15 ± 4	16.2	$0.22 \pm 0.06 \pm 0.02$
$\chi_{c2} \rightarrow \omega_{b}$	< 13	15.7	< 0.2
$\rightarrow K^+K^-\pi^+\pi^-\pi^0$			
//			

First observation

Evidence

Charm (many ongoing analysis)

- Purely leptonic decays
 - f_D and f_{Ds} decay constants
- Semileptonic decays
 - |Vcs | and |Vcd | CKM matrix elements, form factor
- Absolute branching fractions
- · CP or T violation
- D-D mixing
 - Exploiting quantum correlations @ the $\psi(3770)$
- XYZ search
- other.....

Clean single tag at BESIII

 $@\psi(3770)$ with 420pb⁻¹ first clean single tagging sample:

Leptonic decay

- Clean way to measure f_{D+} and f_{Ds} in
- Good agreement between expt. f_{D+} and LQCD calculations
- ~1.6σ difference between expt. f_{Ds} and LQCD calculations

$$\Gamma(D_q^+ \to l^+ \nu) = \frac{G_F^2}{8\pi} \, f_{D_q}^2 \; |V_{cq}\>|^2 \; m_l^2 \left(1 - \frac{m_l^2}{m_{D_q}^2}\right)^2 m_{D_q} \quad (q = d, s)$$

- Two ongoing measurements at BESIII:
 - D+→ μ+ν
 - D_s→ μ⁺ν

August 1st, 2011

Semi-leptonic decay

For pseudo-scalar meson:

$$\frac{d\Gamma(D \to K(\pi)ev)}{dq^2} = \frac{G_F^2}{24\pi^3} |V_{cs(d)}|^2 p_{K(\pi)}^3 |f_+^{K(\pi)}(q^2)|.$$

Semi-leptonic decay

Three ongoing measurements:

- D⁰→K⁻/ π ⁻ e⁺ν
- $-D^+ \rightarrow \pi^0/\eta e^+\nu$,
- $-D^+ \rightarrow \omega/\phi e^+ \nu, \omega \rightarrow \pi^+ \pi^- \pi^0, \phi \rightarrow K^+ K^-$

Motivation:

- Measure form factors and check theory
- Test iso-spin symmetry in D⁰/D⁺ $\rightarrow \pi^+/\pi^0 e^+ v$
- Branching fraction measurements (larger error for PDG value of D⁺ $\rightarrow \omega e^+ \nu$, and only upper limit for D⁺ $\rightarrow \phi e^+ \nu$. can help studying $\omega \phi$ mixing.)

CPV in D decay at BESIII

Direct CP violation in D decays is expected to be small in SM.

For CF and DCS decays direct CP violation requires New Physics. Exception: $D^{\pm} \rightarrow K_{S,L} \pi^{\pm}$ with $A_{CP} = -3.3 \times 10^{-3}$.

For Singly Cabibbo Suppressed (SCS) decays SM CPV could reach 10-3.

$$A_{CP} = \frac{\Gamma(D \to f) - \Gamma(\overline{D} \to \overline{f})}{\Gamma(D \to f) + \Gamma(\overline{D} \to \overline{f})}$$

At BESIII, CP asymmetry can be tested with 10^{-3} sensitivity for many final states.

D.S.Du , EPJC5,579(2007) Y. Grossman et al PRD75, 036008(2007)

Best limits:

Belle: $D^{o} \rightarrow K^{+}K^{-}, \pi^{+}\pi^{-}$ $A_{CP}(K^{+}K^{-}) = (0.43 \pm 0.30 \pm 0.11)\%$ $A_{CP}(\pi^{+}\pi^{-}) = (0.43 \pm 0.52 \pm 0.12)\%$

BABAR: D⁺ \rightarrow K_S π ⁺ A_{CP}(K_S π ⁺)=(-0.44±0.13±0.10)% CLEO-c: Ks π ⁺ π ⁰ A_{CP}(K_S π ⁺ π ⁰)=(0.3±0.9±0.3)%

CP Violation with T-Odd Correlation

- Form T-odd correlation and difference of asymmetries
 - Look for T-violation assuming CPT invariance (Bigi hepph/0107102)
 - D meson four body decays $C_T \equiv \langle \vec{p}_{K^+} \cdot (\vec{p}_{\pi^+} imes \vec{p}_{\pi^-})
 angle$

$$C_T \equiv \langle ec{p}_{K^+} \cdot (ec{p}_{\pi^+} imes ec{p}_{\pi^-})
angle$$

• D \rightarrow KsK $\pi\pi$, KK $\pi\pi$

$$ar{C}_T \equiv \langle ec{p}_{K^-} \cdot (ec{p}_{\pi^-} imes ec{p}_{\pi^+})
angle$$

$$A_{T} = \frac{\Gamma_{\!_{D^0}}(C_T > 0) - \Gamma_{\!_{D^0}}(C_T < 0)}{\Gamma_{\!_{D^0}}(C_T > 0) + \Gamma_{\!_{D^0}}(C_T < 0)} \quad \text{and} \quad \overline{A}_{T} = \frac{\Gamma_{\!_{\overline{D}^0}}(-\overline{C}_T > 0) - \Gamma_{\!_{\overline{D}^0}}(-\overline{C}_T < 0)}{\Gamma_{\!_{\overline{D}^0}}(-\overline{C}_T > 0) + \Gamma_{\!_{\overline{D}^0}}(-\overline{C}_T < 0)}$$

If T violation:

$$\mathcal{A}_T = \frac{A_T - \bar{A}_T}{2} \neq 0$$

- Ongoing analysis:
 - Look into D^{+/-}→ KsKππ, KKππ⁰

Other topics on charm

- Dalitz plot analysis (D⁰→Kππ⁰, D⁺→K⁰_sππ⁰, D⁰→Kπη, D⁺→KKπ):
 - Study the $K\pi$ system, search for the low mass scalar resonance κ
- $\psi(3770)$ cross section measurement
- $\psi(3770)$ line shape measurement

•••

Summary

- ➤ Both pp threshold enhancement and X(1835) are confirmed at BESIII
- \blacktriangleright A new process is observed in $J/\psi \rightarrow \omega X(1870) \rightarrow \omega \eta \pi^+\pi^-$.
- > a0(980) -f0(980) mixing is measured
- \triangleright η_c resonance parameters are measured with higher precision, h_c inclusive and exclusive decays are studied. $\eta_c(2S)$ are confirmed in M1 transition for the first time
- $\triangleright \psi' \rightarrow \gamma P$, $\chi_{cJ} \rightarrow \gamma V$ and $\chi_{cJ} \rightarrow VV$ are measured and many new decay modes are observed for the first time.
- \triangleright Large $\psi(3770)$ data and unique data @4.01GeV are available and many studies are ongoing.
- More exciting/interesting results are upcoming

Thank you!

Backup Slides